10 research outputs found
Increased adhesion of Plasmodium falciparum infected erythrocytes to ICAM-1 in children with acute intestinal injury
Background
Children with severe malaria are at increased risk of invasive bacterial disease particularly infection with enteric gram-negative organisms. These organisms are likely to originate from the gut, however, how and why they breach the intestinal interface in the context of malaria infection remains unclear. One explanation is that accumulation of infected red blood cells (iRBCs) in the intestinal microvasculature contributes to tissue damage and subsequent microbial translocation which can be addressed through investigation of the impact of cytoadhesion in patients with malaria and intestinal damage.
Methods
Using a static adhesion assay, cytoadhesion of iRBCs was quantified in 48 children with malaria to recombinant proteins constitutively expressed on endothelial cell surfaces. Cytoadhesive phenotypes between children with and without biochemical evidence of intestinal damage [defined as endotoxemia or elevated plasma intestinal fatty acid binding protein (I-FABP)] was compared.
Results
The majority of parasites demonstrated binding to the endothelial receptors CD36 and to a lesser extent to ICAM-1. Reduced adhesion to CD36 but not adhesion to ICAM-1 or rosetting was associated with malarial anaemia (p = 0.004). Increased adhesion of iRBCs to ICAM-1 in children who had evidence of elevated I-FABP (p = 0.022), a marker of intestinal ischaemia was observed. There was no correlation between the presence of endotoxemia and increased adhesion to any of the recombinant proteins.
Conclusion
Increased parasite adhesion to ICAM-1 in children with evidence of intestinal ischaemia lends further evidence to a link between the cytoadherence of iRBCs in gut microvasculature and intestinal damage
Bi-isotype immunoglobulins enhance antibody-mediated neutrophil activity against Plasmodium falciparum parasites
Background: Malaria remains a major global health priority, and monoclonal antibodies (mAbs) are emerging as potential new tools to support efforts to control the disease. Recent data suggest that Fc-dependent mechanisms of immunity are important mediators of protection against the blood stages of the infection, but few studies have investigated this in the context of mAbs. We aimed to isolate mAbs agnostic to cognate antigens that target whole merozoites and simultaneously induce potent neutrophil activity measured by the level of reactive oxygen species (ROS) production using an antibody-dependent respiratory burst (ADRB) assay. Methods: We used samples from semi-immune adults living in coastal Kenya to isolate mAbs that induce merozoite-specific ADRB activity. We then tested whether modifying the expressed IgG1 isotype to an IgG–IgA Fc region chimera would enhance the level of ADRB activity. Results: We isolated a panel of nine mAbs with specificity to whole merozoites. mAb J31 induced ADRB activity in a dose-dependent fashion. Compared to IgG1, our modified antibody IgG–IgA bi-isotype induced higher ADRB activity across all concentrations tested. Further, we observed a negative hook effect at high IgG1 mAb concentrations (i.e., >200 µg/mL), but this was reversed by Fc modification. We identified MSP3.5 as the potential cognate target of mAb J31. Conclusions: We demonstrate an approach to engineer mAbs with enhanced ADRB potency against blood-stage parasites
Biomarkers of post-discharge mortality among children with complicated severe acute malnutrition
High mortality after discharge from hospital following acute illness has been observed among children with Severe Acute Malnutrition (SAM). However, mechanisms that may be amenable to intervention to reduce risk are unknown. We performed a nested case-control study among HIV-uninfected children aged 2-59 months treated for complicated SAM according to WHO recommendations at four Kenyan hospitals. Blood was drawn from 1778 children when clinically judged stable before discharge from hospital. Cases were children who died within 60 days. Controls were randomly selected children who survived for one year without readmission to hospital. Untargeted proteomics, total protein, cytokines and chemokines, and leptin were assayed in plasma and corresponding biological processes determined. Among 121 cases and 120 controls, increased levels of calprotectin, von Willebrand factor, angiotensinogen, IL8, IL15, IP10, TNF alpha, and decreased levels of leptin, heparin cofactor 2, and serum paraoxonase were associated with mortality after adjusting for possible confounders. Acute phase responses, cellular responses to lipopolysaccharide, neutrophil responses to bacteria, and endothelial responses were enriched among cases. Among apparently clinically stable children with SAM, a sepsis-like profile is associated with subsequent death. This may be due to ongoing bacterial infection, translocated bacterial products or deranged immune response during nutritional recovery
Antibody-Dependent Respiratory Burst against <i>Plasmodium falciparum</i> Merozoites in Individuals Living in an Area with Declining Malaria Transmission
Malaria transmission intensity affects the development of naturally acquired immunity to malaria. An absolute correlate measure of protection against malaria is lacking. However, antibody-mediated functions against Plasmodium falciparum correlate with protection against malaria. In children, antibody-mediated functions against P. falciparum decline with reduced exposure. It is unclear whether adults maintain antibody-mediated functions as malaria transmission declines. This study assessed antibody-dependent respiratory burst (ADRB) in individuals from an area with declining malaria transmission. In an age-matched analysis, we compare ADRB activity during high versus low malaria transmission periods. Age significantly predicted higher ADRB activity in the high (p p P. falciparum infection influenced ADRB activity during the low (p = 0.01) but not the high (p = 0.29) malaria transmission period. These findings propose that naturally acquired immunity to P. falciparum is affected in children and adults as malaria transmission declines, implying that vaccines will be necessary to induce and maintain protection against malaria
Recommended from our members
Characterization of a novel Plasmodium falciparum merozoite surface antigen and potential vaccine target.
Peer reviewed: TrueINTRODUCTION: Detailed analyses of genetic diversity, antigenic variability, protein localization and immunological responses are vital for the prioritization of novel malaria vaccine candidates. Comprehensive approaches to determine the most appropriate antigen variants needed to provide broad protection are challenging and consequently rarely undertaken. METHODS: Here, we characterized PF3D7_1136200, which we named Asparagine-Rich Merozoite Antigen (ARMA) based on the analysis of its sequence, localization and immunogenicity. We analyzed IgG and IgM responses against the common variants of ARMA in independent prospective cohort studies in Burkina Faso (N = 228), Kenya (N = 252) and Mali (N = 195) using a custom microarray, Div-KILCHIP. RESULTS: We found a marked population structure between parasites from Africa and Asia. African isolates shared 34 common haplotypes, including a dominant pair although the overall selection pressure was directional (Tajima's D = -2.57; Fu and Li's F = -9.69; P < 0.02). ARMA was localized to the merozoite surface, IgG antibodies induced Fc-mediated degranulation of natural killer cells and strongly inhibited parasite growth in vitro. We found profound serological diversity, but IgG and IgM responses were highly correlated and a hierarchical clustering analysis identified only three major serogroups. Protective IgG and IgM antibodies appeared to target both cross-reactive and distinct epitopes across variants. However, combinations of IgG and IgM antibodies against selected variants were associated with complete protection against clinical episodes of malaria. DISCUSSION: Our systematic strategy exploits genomic data to deduce the handful of antigen variants with the strongest potential to induce broad protection and may be broadly applicable to other complex pathogens for which effective vaccines remain elusive
DataSheet_1_Bi-isotype immunoglobulins enhance antibody-mediated neutrophil activity against Plasmodium falciparum parasites.pdf
BackgroundMalaria remains a major global health priority, and monoclonal antibodies (mAbs) are emerging as potential new tools to support efforts to control the disease. Recent data suggest that Fc-dependent mechanisms of immunity are important mediators of protection against the blood stages of the infection, but few studies have investigated this in the context of mAbs. We aimed to isolate mAbs agnostic to cognate antigens that target whole merozoites and simultaneously induce potent neutrophil activity measured by the level of reactive oxygen species (ROS) production using an antibody-dependent respiratory burst (ADRB) assay.MethodsWe used samples from semi-immune adults living in coastal Kenya to isolate mAbs that induce merozoite-specific ADRB activity. We then tested whether modifying the expressed IgG1 isotype to an IgG–IgA Fc region chimera would enhance the level of ADRB activity.ResultsWe isolated a panel of nine mAbs with specificity to whole merozoites. mAb J31 induced ADRB activity in a dose-dependent fashion. Compared to IgG1, our modified antibody IgG–IgA bi-isotype induced higher ADRB activity across all concentrations tested. Further, we observed a negative hook effect at high IgG1 mAb concentrations (i.e., >200 µg/mL), but this was reversed by Fc modification. We identified MSP3.5 as the potential cognate target of mAb J31.ConclusionsWe demonstrate an approach to engineer mAbs with enhanced ADRB potency against blood-stage parasites.</p
Pooled testing conserves SARS-CoV-2 laboratory resources and improves test turn-around time: Experience on the Kenyan Coast
Background:
International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period.
Methods:
We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast.
Results:
In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly.
Conclusions:
Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings
Genomic epidemiology of SARS-CoV-2 in Seychelles, 2020–2021
Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained low until January 2021, when a surge was observed. Here, we investigated the potential drivers of the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between 14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during the study period. The majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible SARS-CoV-2 variants into the islands
An optimization of four SARS-CoV-2 qRT-PCR assays in a Kenyan laboratory to support the national COVID-19 rapid response teams
Background: The COVID-19 pandemic relies on real-time polymerase chain reaction (qRT-PCR) for the detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to facilitate roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers’ recommendations to sustain the testing capability in a resource-limited setting.
Methods: We used a SARS-CoV-2 positive control RNA sample to generate several 10-fold dilution series that were used for optimization and comparison of the performance of the four qRT-PCR assays: i) Charité Berlin primer-probe set, ii) European Virus Archive – GLOBAL (EVAg) primer-probe set, iii) DAAN premixed commercial kit and iv) Beijing Genomics Institute (BGI) premixed commercial kit. We adjusted the manufacturer- and protocol-recommended reaction component volumes for these assays and assessed the impact on cycle threshold (Ct) values.
Results: The Berlin and EVAg E gene and RdRp assays reported mean Ct values within range of each other across the different titrations and with less than 5% difference. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit improved in performance following a reduction of the reaction components.
Conclusion: We achieved a 2.6-fold and 4-fold increase in the number of tests per kit for the commercial kits and the primer-probe sets, respectively. All the assays had optimal performance when the primers and probes were used at 0.375X, except for the Berlin N gene assay. The DAAN kit was a reliable assay for primary screening of SARS-CoV-2 whereas the BGI kit’s performance was dependent on the volumes and concentrations of both the reaction buffer and enzyme mix. Our recommendation for SARS-CoV-2 diagnostic testing in resource-limited settings is to optimize the assays available to establish the lowest volume and suitable concentration of reagents required to produce valid results