47 research outputs found

    Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies

    Get PDF
    Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation

    SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis.

    Get PDF
    BACKGROUND: Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these pathological gene expression changes require therapeutic normalisation remains a fundamental question. METHODS: Here, we investigated genome-wide RNA changes in C9ORF72-ALS patient-derived neurons and Drosophila, as well as upon neuroprotection taking advantage of our gene therapy approach which specifically inhibits the SRSF1-dependent nuclear export of pathological C9ORF72-repeat transcripts. This is a critical study to evaluate (i) the overall safety and efficacy of the partial depletion of SRSF1, a member of a protein family involved itself in gene expression, and (ii) a unique opportunity to identify neuroprotective RNA changes. RESULTS: Our study shows that manipulation of 362 transcripts out of 2257 pathological changes, in addition to inhibiting the nuclear export of repeat transcripts, is sufficient to confer neuroprotection in C9ORF72-ALS patient-derived neurons. In particular, expression of 90 disease-altered transcripts is fully reverted upon neuroprotection leading to the characterisation of a human C9ORF72-ALS disease-modifying gene expression signature. These findings were further investigated in vivo in diseased and neuroprotected Drosophila transcriptomes, highlighting a list of 21 neuroprotective changes conserved with 16 human orthologues in patient-derived neurons. We also functionally validated the high neuroprotective potential of one of these disease-modifying transcripts, demonstrating that inhibition of ALS-upregulated human KCNN1-3 (Drosophila SK) voltage-gated potassium channel orthologs mitigates degeneration of human motor neurons and Drosophila motor deficits. CONCLUSIONS: Strikingly, the partial depletion of SRSF1 leads to expression changes in only a small proportion of disease-altered transcripts, indicating that not all RNA alterations need normalization and that the gene therapeutic approach is safe in the above preclinical models as it does not disrupt globally gene expression. The efficacy of this intervention is also validated at genome-wide level with transcripts modulated in the vast majority of biological processes affected in C9ORF72-ALS. Finally, the identification of a characteristic signature with key RNA changes modified in both the disease state and upon neuroprotection also provides potential new therapeutic targets and biomarkers.This work was initiated with the Medical Research Council (MRC) grant MR/M010864/1 (KN, GMH, PJS) and the MND Association grant Hautbergue/Apr16/846–791 (GMH, LF, AJW, PJS, LMC). This research was further supported by the MRC New Investigator research grant MR/R024162/1 (GMH) and the Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/S005277/1 (GMH). LC was supported by H2020-EU EU Marie Curie fellowship CONTESSA (ID: 660388). CDSS is funded by an AstraZeneca Post-Doctoral award. LF was funded by the Thierry Latran Foundation (FTLAAP2016/ Astrocyte secretome) and is currently supported by the MND Association grant Apr16/848–791 and the Academy of Medical Sciences Springboard Award. AJW was supported by MRC core funding (MC_UU_00015/6) and ERC Starting grant (DYNAMITO; 309742). GMH also reports grants Apr17/854–791 from the MND Association, Thierry Latran FTLAAP2016/ Astrocyte secretome and Royal Society International Exchanges grant IEC\R3\17010 during the course of this study. MA acknowledge grants from Alzheimer’s Research UK (ARUK-PG2018B-005), European Research Council (ERC Advanced Award 294745) and MRC DPFS (129016). PJS is supported as an NIHR Senior Investigator Investigator (NF-SI-0617–10077) and by the MND Association (AMBRoSIA 972–797) and MRC grant MR/S004920/1

    Brief Report: Is Impaired Classification of Subtle Facial Expressions in Children with Autism Spectrum Disorders Related to Atypical Emotion Category Boundaries?

    Get PDF
    Impairments in recognizing subtle facial expressions, in individuals with autism spectrum disorder (ASD), may relate to difficulties in constructing prototypes of these expressions. Eighteen children with predominantly intellectual low-functioning ASD (LFA, IQ <80) and two control groups (mental and chronological age matched), were assessed for their ability to classify emotional faces, of high, medium and low intensities, as happy or angry. For anger, the LFA group made more errors for lower intensity expressions than the control groups, classifications did not differ for happiness. This is the first study to find that the LFA group made more across-valence errors than controls. These data are consistent with atypical facial expression processing in ASD being associated with differences in the structure of emotion categories

    Loss of TMEM106B exacerbates C9ALS/FTD DPR pathology by disrupting autophagosome maturation

    Get PDF
    Disruption to protein homeostasis caused by lysosomal dysfunction and associated impairment of autophagy is a prominent pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). The most common genetic cause of ALS/FTD is a G4C2 hexanucleotide repeat expansion in C9orf72 (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 repeat transcripts gives rise to dipeptide repeat (DPR) proteins that have been shown to be toxic and may contribute to disease etiology. Genetic variants in TMEM106B have been associated with frontotemporal lobar degeneration with TDP-43 pathology and disease progression in C9ALS/FTD. TMEM106B encodes a lysosomal transmembrane protein of unknown function that is involved in various aspects of lysosomal biology. How TMEM106B variants affect C9ALS/FTD is not well understood but has been linked to changes in TMEM106B protein levels. Here, we investigated TMEM106B function in the context of C9ALS/FTD DPR pathology. We report that knockdown of TMEM106B expression exacerbates the accumulation of C9ALS/FTD-associated cytotoxic DPR proteins in cell models expressing RAN-translated or AUG-driven DPRs as well as in C9ALS/FTD-derived iAstrocytes with an endogenous G4C2 expansion by impairing autophagy. Loss of TMEM106B caused a block late in autophagy by disrupting autophagosome to autolysosome maturation which coincided with impaired lysosomal acidification, reduced cathepsin activity, and juxtanuclear clustering of lysosomes. Lysosomal clustering required Rab7A and coincided with reduced Arl8b-mediated anterograde transport of lysosomes to the cell periphery. Increasing Arl8b activity in TMEM106B-deficient cells not only restored the distribution of lysosomes, but also fully rescued autophagy and DPR protein accumulation. Thus, we identified a novel function of TMEM106B in autophagosome maturation via Arl8b. Our findings indicate that TMEM106B variants may modify C9ALS/FTD by regulating autophagic clearance of DPR proteins. Caution should therefore be taken when considering modifying TMEM106B expression levels as a therapeutic approach in ALS/FTD

    Dynamic changes in eIF4F-mRNA interactions revealed by global analyses of environmental stress responses

    Get PDF
    BACKGROUND: Translation factors eIF4E and eIF4G form eIF4F, which interacts with the messenger RNA (mRNA) 5' cap to promote ribosome recruitment and translation initiation. Variations in the association of eIF4F with individual mRNAs likely contribute to differences in translation initiation frequencies between mRNAs. As translation initiation is globally reprogrammed by environmental stresses, we were interested in determining whether eIF4F interactions with individual mRNAs are reprogrammed and how this may contribute to global environmental stress responses. RESULTS: Using a tagged-factor protein capture and RNA-sequencing (RNA-seq) approach, we have assessed how mRNA associations with eIF4E, eIF4G1 and eIF4G2 change globally in response to three defined stresses that each cause a rapid attenuation of protein synthesis: oxidative stress induced by hydrogen peroxide and nutrient stresses caused by amino acid or glucose withdrawal. We find that acute stress leads to dynamic and unexpected changes in eIF4F-mRNA interactions that are shared among each factor and across the stresses imposed. eIF4F-mRNA interactions stabilised by stress are predominantly associated with translational repression, while more actively initiating mRNAs become relatively depleted for eIF4F. Simultaneously, other mRNAs are insulated from these stress-induced changes in eIF4F association. CONCLUSION: Dynamic eIF4F-mRNA interaction changes are part of a coordinated early translational control response shared across environmental stresses. Our data are compatible with a model where multiple mRNA closed-loop complexes form with differing stability. Hence, unexpectedly, in the absence of other stabilising factors, rapid translation initiation on mRNAs correlates with less stable eIF4F interactions

    The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response

    Get PDF
    The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control

    SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits.

    Get PDF
    Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1 specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1 triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.MRC, ERC, FP
    corecore