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SRSF1-dependent nuclear export inhibition
of C9ORF72 repeat transcripts prevents
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Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic

cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat

transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How

repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of

the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a

Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of

patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We

further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1

specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of

dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons

and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1

triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded

hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.
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A
myotrophic lateral sclerosis (ALS) and frontotemporal
dementia (FTD) are fatal adult-onset neurodegenerative
diseases, which respectively cause progressive death of

motor neurons with escalating failure of the neuromuscular
system and characteristic alterations of cognitive function and
personality features. Neuroprotective treatment options are
currently extremely limited and the anti-glutamatergic agent
riluzole prolongs survival in ALS patients by only approximately
3 months. The most commonly identified genetic cause of ALS
and FTD involves polymorphic repeat expansions, composed of
hundreds to thousands of the GGGGCC hexanucleotide-repeat
sequence (hereafter abbreviated G4C2) in the first intron of the
C9ORF72 gene, with autosomal dominant inheritance and
incomplete penetrance1–4. The repeat DNA sequences are bi-
directionally transcribed leading to the characteristic formation of
G4C2-sense and C4G2-antisense RNA foci both in ALS and FTD
cases5,6. The expression levels and splicing of transcripts involved
in multiple cellular pathways are affected in ALS models
and human post-mortem tissues leading to dysregulation of
RNA metabolism, mitochondrial dysfunction, oxidative stress,
excitotoxicity, apoptosis, altered mechanisms of autophagy,
protein clearance, axonal transport and motor neuron-astrocyte
cross-talk (for reviews, see references1,3). Consistent with this,
widespread alterations of alternative splicing (48,000) and
alternative polyadenylation site usage (41,000) were recently
identified in biosamples of cerebellum from C9ORF72-ALS
patients5. We have also reported that alteration of splicing
consistency correlates with faster disease progression in
C9ORF72-ALS cases independently of the DNA repeat
expansion length7.

The pathophysiology mediated by C9ORF72 repeat expansions
potentially involves three extensively-studied mechanisms which
may all contribute to neuronal injury and disease progression:
(i) RNA toxic gain-of-function by sequestration of RNA-binding
factors8–12; (ii) protein toxic gain-of-function due to repeat-
associated non-ATG (RAN) translation that occurs in all sense
and antisense reading frames to produce five dipeptide-repeat
proteins (DPRs)6,13–16; (iii) haploinsufficiency due to decreased
expression of the C9ORF72 protein2,17,18 which has recently been
shown to play a key role in the Rab GTPase-dependent regulation
of autophagy19–21. We refer to references22–26 for recent reviews
on the mechanisms of C9ORF72-mediated neurotoxicity.

The splicing of the first intron of C9ORF72 does not appear
to be affected by the presence of the hexanucleotide repeat
expansions as the proportion of unspliced transcripts measured
by the exon1–intron1 junction remains similar in control and
patient-derived neurons or post-mortem brain tissues27. A small
proportion of C9ORF72 repeat transcripts retaining pathological
repeat expansions in intron-1 escape nuclear retention
mechanisms and were detected in the cytoplasm of patient-
derived lymphoblasts28 where they can subsequently be translated
into DPRs. Interestingly, nucleocytoplasmic transport defects of
proteins and RNA were recently highlighted in Drosophila, yeast
and human neuronal models of C9ORF72-related ALS29–32.
In particular, a loss-of-function screen in Drosophila identified
ALYREF (Aly/REF export factor) and NXF1 (nuclear export
factor 1), two components of the mRNA nuclear export
machinery, as modifiers of the neurotoxicity mediated by
C9ORF72 repeat expansions30. However, the mechanism(s)
driving the specific nuclear export of pathological intron-
retaining C9ORF72 repeat transcripts remain to be elucidated.
We and others have reported direct binding and sequestration of
the nuclear export adaptor proteins ALYREF33 and SRSF1
(serine/arginine-rich splicing factor 1)34 onto G4C2-repeat
transcripts11,12. Our previous research showed that nuclear
export adaptors, which directly interact with RNA and the

nuclear export receptor NXF1, remodel NXF1 in an open
conformation in concert with subunits of the TREX
(Transcription-Export) complex to increase its affinity for
mature mRNAs and trigger the process of mRNA nuclear
export35–39. The remodelling of NXF1 offers a control
mechanism to retain unprocessed transcripts in the
nucleus37,40. Knockdowns of ALYREF in Caenorhabditis
elegans41 and Drosophila melanogaster42 are dispensable to the
global nuclear export of mRNA and development. Notably, only a
partial block of nuclear export is induced upon ALYREF
depletion in human cells43, suggesting the existence of other
proteins with redundant export function. Consistent with this,
multiple conserved human nuclear export adaptors were
found to interact with the RNA-binding domain of NXF1
(refs 34,37,44,45) and can simultaneously interact with the same
mRNA molecules44. A recent study further showed that whilst
each of the seven SR-rich splicing factors SRSF1-7 bind thousands
of transcripts, the nuclear export of only a small proportion of
transcripts (o0.5–2% mRNAs) is affected upon individual
knockdown of the SRSF1-7 proteins, clearly highlighting
redundancy and/or cooperation in the NXF1-dependent nuclear
export adaptor function46. We refer to references47,48 for recent
reviews on TREX and the nuclear export of mRNA.

Here, we hypothesized that: (i) Excessive binding of nuclear
export adaptor(s) onto C9ORF72 repeat transcripts might force
interactions with NXF1 and override the nuclear retention
mechanisms; (ii) depletion of sequestered export factors that
may inappropriately license the nuclear export of intron-retaining
repeat transcripts might in turn confer neuroprotection. We used
an established Drosophila model of C9ORF72-related disease
which exhibits both neurodegeneration and locomotor deficits16

to identify potential nuclear export adaptor(s) involved in the
nuclear export of C9ORF72 repeat transcripts. We also used a
combination of neuronal N2A cells and ALS patient-derived
neurons and astrocytes to validate our in vivo findings and dissect
the molecular mechanisms driving the nuclear export of repeat
transcripts and their associated neurotoxicity. In this study,
we demonstrate that sequestration of SRSF1 onto C9ORF72
repeat transcripts triggers their NXF1-related nuclear export
independently of splicing which leads to the subsequent RAN
translation of neurotoxic levels of DPRs. Moreover, we show that
the partial depletion of SRSF1 does not alter expression level,
intron-1 splicing or nuclear export of the wild-type C9ORF72
transcripts while it specifically prevents C9ORF72-mediated
neurodegeneration and in vivo associated motor deficits.

Results
ALYREF and SRSF1 directly bind G4C2 and C4G2 repeat RNA.
We performed in vitro UV-crosslinking assays using purified
recombinant proteins and synthetic G4C2x5 and C4G2x5
RNA probes to investigate direct protein:RNA interactions.
Recombinant hexa-histidine-tagged human ALYREF, SRSF1
amino-acids 11-196 which retains wild-type ability to bind RNA
and NXF1 (ref. 36), and MAGOH, a control protein which
does not bind RNA49, were purified by ion metal affinity
chromatography in high salt to disrupt potential interactions with
bacterial RNA. Purified proteins were incubated with 50-end
32P-radiolabelled G4C2x5 (Fig. 1a) or C4G2x5 (Fig. 1b) RNA
probes prior to irradiation with UV where indicated (þ ) and
resolved by SDS–PAGE. As shown on the Phosphoimages,
covalently-bound RNA molecules remained associated with
ALYREF and SRSF1 visualized on the Coomassie-stained panels
during the denaturing electrophoresis. These data demonstrate
direct interactions of ALYREF and SRSF1 with both sense
and antisense repeat RNA in agreement with our previous
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studies12,50. The interactions are specific since no binding of RNA
was detected in absence of UV-irradiation or with the negative
control protein MAGOH. These direct interactions are also
consistent with our previously reported co-localization of
ALYREF with RNA foci in motor neurons from C9ORF72-ALS
patients12. Furthermore, we show that SRSF1 co-localizes with
RNA foci in motor neurons from human post mortem spinal
cord tissue of C9ORF72-ALS cases (Fig. 1c).

Depletion of SRSF1 rescues a Drosophila model of C9ORF72-ALS.
To gain functional insight into the nuclear export dependence
of G4C2-repeat transcripts, we tested whether reducing the
expression levels of the conserved nuclear export adaptors
ALYREF and SRSF1 might rescue neurodegeneration in
C9ORF72-ALS Drosophila16. Flies expressing 36 uninterrupted
repeats (‘pure’ G4C2x36) were crossed with two independent
transgenic RNAi lines each targeting SRSF1 or ALYREF51

(inverted repeat sequences available in Supplementary Note 1).
Targeted expression of G4C2x36 disrupts the compound eye and
is minimally altered by co-expression of a control RNAi (Fig. 2a).
In contrast, co-expression of two different SRSF1-RNAi
sequences (also called SF2/ASF) completely prevented
neurodegeneration, while two knockdown lines of ALYREF
(also called Ref1) only showed a modest rescue of the
neurodegenerative phenotype. We validated the successful
knockdown of SRSF1 and ALYREF in the corresponding flies
showing 70-80% reduction in mRNA expression levels (Fig. 2b).
Moreover, the neuronal expression of the G4C2x36 repeat
expansion was shown to cause both larval and adult locomotor

deficits in this model16. Consistent with a pathogenic role for
SRSF1, its partial depletion restored locomotor function in larvae
(Fig. 2c) and adult flies (Fig. 2d). This effect is specific of SRSF1
since depletion of ALYREF showed no effect, which is in
agreement with the rough eye phenotypes. The neurotoxicity
effects observed in the G4C2x36 C9ORF72-ALS model of
Drosophila were primarily attributed to the expression of
DPRs16. Accordingly, we now show that the depletion of SRSF1
leads to prominent reduction in the production of both sense and
antisense poly-GP DPRs (Fig. 2e).

To test for the hexanucleotide-repeat expansion specificity of the
SRSF1-RNAi rescued phenotypes, we used the previously established
GR36 and PR36 flies16 which respectively express 36-repeat poly-
Gly-Arg and poly-Pro-Arg DPRs using alternative codons. As
reported in the original study16, the GR36 flies have a high rate of
mortality and only a few GR36 flies crossed with Ctrl or SRSF1-
RNAi survived to adulthood. Nonetheless, the partial depletion of
SRSF1 did not significantly ameliorate the rough eye phenotypes
(Fig. 2f) or the locomotor deficits (Fig. 2g) induced by the G4C2-
independent expression of DPRs in both GR36 and PR36-expressing
flies. These results indicate that partial depletion of SRSF1 exerts
neuroprotection through direct effects on the C9ORF72
hexanucleotide repeat expansion rather than indirect effect on
gene expression alteration or downstream accumulation of DPRs.

SRSF1 depletion mitigates astrocyte-mediated neurotoxicity.
To apply our in vivo findings to human C9ORF72-related
ALS, we sought to deplete SRSF1 in patient-derived cell models.
Human SRSF1-knockdown plasmids co-expressing a GFP
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Figure 1 | Purified ALYREF and SRSF1 proteins directly interact with hexanucleotide repeat sense and antisense RNA. (a,b) Protein:RNA UV

crosslinking assays using purified recombinant proteins and 32P-end-radiolabelled G4C2x5 (a) and C4G2x5 (b) repeat RNA probes. Proteins are

visualized on SDS–PAGE stained with Coomassie blue (left panels) and covalently linked RNA:protein complexes by autoradiography on PhosphoImages

(Right panels). UV exposure is indicated by þ . (c) Fluorescence confocal microscopy images show co-localization of SRSF1 (labelled in green by

immunofluorescence) and sense RNA foci (labelled in red using fluorescence in situ hybridization) in motor neurons from post-mortem spinal cord tissues

of two human C9ORF72-ALS cases. Nuclei are stained in blue by DAPI. Scale bars in left panels: 3mm; scale bars in zoomed panels: 0.5 mm.
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reporter and a pre-miRNA cassette were engineered to
produce recombinant SRSF1-RNAi lentivirus (LV-SRSF1-RNAi)
(Supplementary Fig. 1a). HEK293T cells co-transfected with
SRSF1-RNAi constructs and a FLAG-tagged SRSF1 expression
plasmid showed efficient and specific depletion of SRSF1

(Fig. 3a). The survival and morphology of C9ORF72-ALS
patient-derived neurons is indistinguishable from control
neurons9,10. We thus assessed motor neuron survival in
co-cultures with patient-derived astrocytes using our recently
developed assay that recapitulates the astrocyte-mediated
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Figure 3 | Depletion of SRSF1 suppresses patient-derived C9ORF72-mediated astrocytic toxicity and motor neuron death. (a) Untransfected

HEK293T (UT), control (Ctrl)-RNAi, SRSF1-RNAi or LV-SRSF1-RNAi and FLAG-tagged SRSF1 transfected cells were analysed 72 h post-transfection by

immunoblotting using anti-FLAG, anti-ALYREF and loading control anti-a-Tubulin antibodies. (b) SRSF1 and ALYREF transcript levels were quantified by

qRT–PCR analysis following normalization to U1 snRNA levels in three biological replicate experiments (mean±s.e.m.; two-way ANOVA with Tukey’s

correction for multiple comparisons; N (qRT–PCR reactions)¼6). Three control (Ctrl-pat) and three C9ORF72-ALS (C9-ALS-pat) colour-coded patient

lines were used. (c) Representative immunofluorescence microscopy images from iAstrocytes and motor neuron co-cultures. iAstrocytes derived from

controls (top left image) and C9ORF72-ALS patients (bottom left image) were transduced with Ad-RFP as viral control and cultured with Hb9GFPþ motor

neurons (green). C9ORF72-ALS iAstrocytes exhibit toxicity against motor neurons as previously reported. Transduction of control Ad-RFP iAstrocytes with

LV-SRSF1-RNAi co-expressing GFP led to consistent survival of Hb9GFP motor neurons on control astrocytes (top right image) and increase in survival of

motor neurons on C9ORF72-ALS astrocytes (bottom right image). Arrows point to examples of axons of motor neurons. Scale bar, 50 mm. (d) Same

control (Ctrl-pat) and C9ORF72-ALS (C9-ALS-pat) colour-coded patient lines (as in b) are used for quantification of Hb9-GFPþ motor neuron counts in

four biological replicates of co-cultures of astrocytes and motor neurons at day 3 (mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple

comparisons; N (Hb9-MNs)¼Ctrl-pat154: 567/589/582/500, Ctrl-pat154þ SRSF1-RNAi: 620/543/504/349, Ctrl-pat155: 602/610/553/571,

Ctrl-pat155þ SRSF1-RNAi: 554/584/532/516, Ctrl-pat209: 519/599/584/535, Ctrl-pat209þ SRSF1-RNAi: 617/486/425/572, C9-ALS-pat78: 352/279/

294/258, C9-ALS-pat78þ SRSF1-RNAi: 569/451/398/583, C9-ALS-pat183: 200/188/154/145, C9-ALS-pat183þ SRSF1-RNAi: 480/420/380/399,

C9-ALS-pat201: 201/243/261/224, C9-ALS-pat201þ SRSF1-RNAi: 486/463/444/485). (e) Quantification of nuclear and cytoplasmic sense RNA foci in

SRSF1-RNAi-transduced iAstrocytes (mean±s.e.m.; two-way ANOVA; N (cells with 1-5 RNA foci)¼C9-ALS-pat78þMOI0: 21, C9-ALS-pat78þMOI5:

20, C9-ALS-pat78þMOI7: 22, C9-ALS-pat183þMOI0: 21, C9-ALS-pat183þMOI5: 24, C9-ALS-pat183þMOI7: 22, C9-ALS-pat201þMOI0: 24,

C9-ALS-pat201þMOI5: 23, C9-ALS-pat201þMOI7: 22). 495% of cells with RNA foci presented a total of 5 or fewer foci. Statistical significance of data

is indicated as follows: NS: non-significant, PZ0.05; *Po0.05; **Po0.01; ***Po0.001; ****Po0.0001.

Figure 2 | Depletion of SRSF1 prevents in vivo neurodegeneration and restores locomotor function. (a) Representative light and scanning electron

micrographs show normal eye phenotypes for Control (GAL4/luciferase-RNAi) and G4C2x3 flies. Expression of G4C2x36 causes a rough eye phenotype

which is fully rescued by SRSF1 knockdown. Scale bars: 100 mm for low magnification and 50mm for zoomed micrographs. (b) SRSF1 (red) and ALYREF

(blue) transcript levels were quantified by qRT–PCR analysis in independent knockdown lines in G4C2x36 flies. Tub84b transcript levels were used for

normalization in three biological replicate experiments (mean±s.e.m.; two-way ANOVA with Tukey’s correction for multiple comparisons; N (qRT–PCR

reactions)¼6). (c,d) Neuronal expression of G4C2x36 causes larval crawling (c) and adult climbing (d) deficits that are both restored by SRSF1 depletion

(mean±95% CI normalized to control; Kruskal–Wallis non-parametric test with Dunn’s correction for multiple comparisons; N (larvae)¼ 10;

N (adults)¼ control (GAL4/luciferase-RNAi): 93, G4C2x3: 26, G4C2x36þCtrl-RNAi: 62, G4C2x36þ SRSF1-RNAi: 50, G4C2x36þALYREF-RNAi: 36).

(e) Total protein extracts from G4C2x3þCtrl-RNAi, G4C2x36þCtrl RNAi and G4C2x36þ SRSF1-RNAi Drosophila larvae were analysed by dot blots using

poly-GP and loading control a-tubulin antibodies. Scale bar, 6 mm. (f) SRSF1 depletion in Drosophila models expressing DPRs independently of G4C2

repeat expansions and RAN translation16. (g) Neuronal expression of poly-Gly-Arg DPRs (GR36) and poly-Pro-Arg DPRs (PR36) causes adult

climbing deficits that are not restored by SRSF1 depletion (mean±95% CI normalized to Control; Kruskal–Wallis non-parametric test with Dunn’s

correction for multiple comparisons; N¼Control (GAL4/luciferase-RNAi): 239, GR36þCtrl-RNAi: 12, GR36þ SRSF1-RNAi: 7, PR36þCtrl-RNAi:

125, PR36þ SRSF1-RNAi: 119). Statistical significance of data is indicated as follows: NS: non-significant, PZ0.05; *Po0.05; **Po0.01; ***Po0.001;

****Po0.0001.
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neurotoxicity observed in ALS for both primary mouse and
human derived neurons52.

Transduction of human iNPC (induced neural progenitor
cells)-differentiated astrocytes (iAstrocytes) using a viral
multiplicity of infection (MOI) of 5 led to efficient transcript
knockdown comparable to levels achieved in vivo in neuro-
protected G4C2x36þ SRSF1-RNAi Drosophila (Supplementary
Fig. 2a). Mouse GFP-Hb9þ motor neurons were plated onto
LV-SRSF1-RNAi transduced astrocytes derived from three
controls and three C9ORF72-ALS patient fibroblast lines
(Table 1) and automatically counted daily for three days using
a high-throughput imaging system (Supplementary Fig. 2b,
Methods). Quantification of SRSF1 and ALYREF mRNA levels
confirmed the specific and partial knockdown of SRSF1
transcripts in both control and C9ORF72-ALS iAstrocytes
(Fig. 3b). Control iAstrocytes transduced with an RFP-adenovirus
(red) efficiently supported the growth of GFP-Hb9þ motor

neurons (green) while fewer motor neurons survived when
co-cultured with astrocytes derived from C9ORF72-ALS patient
fibroblasts52 (Fig. 3c). Quantification of surviving motor neurons
from four replicate experiments showed that while depletion of
SRSF1 is not detrimental to control co-cultures, motor neuron
death was prevented by depletion of SRSF1 in co-cultures derived
from three separate C9ORF72-ALS cases (Fig. 3d).

To investigate potential nuclear export alterations of
G4C2 repeat transcripts, we quantified nuclear and cytoplasmic
sense RNA foci in the C9ORF72-ALS iAstrocytes in blinded
experiments. Representative images and individual counts are
respectively reported in Supplementary Fig. 3 and Supplementary
Table 1. Upon depletion of SRSF1, the average number of foci per
cells remained similar. However, the number of cytoplasmic RNA
foci decreased while nuclear RNA foci concomitantly increased
upon SRSF1 depletion (Fig. 3e) consistent with a potential nuclear
export inhibition of G4C2-repeat transcripts.

RAN-dependent translation of DPRs in neuronal cell models.
To investigate whether the binding of SRSF1 to G4C2-sense and
C4G2-antisense repeat RNA sequences has the ability to trigger
the nuclear export of repeat transcripts, we generated synthetic
mammalian expression constructs bearing increasing lengths of
pure repeat sequences in the absence of ATG or Kozak elements
to specifically investigate RAN-dependent translation of dipeptide
repeat proteins. Following annealing of synthetic G4C2 or
C4G2 repeat oligonucleotides as described in Methods and
Supplementary Fig. 4a–d, we engineered plasmids expressing
transcripts containing 15 or 38 uninterrupted sense repeats
(G4C2x15 or G4C2x38) and 15 or 39 uninterrupted antisense

Table 1 | List and characteristics of patient-derived cells
used in this study.

Patient
sample

Ethnicity Gender Cell type Age at biopsy
collection

78 Caucasian Male C9ORF72 66
183 Caucasian Male C9ORF72 49
201 Caucasian Female C9ORF72 66
154 Caucasian Female Control 55
155 Caucasian Male Control 40
209 Caucasian Female Control 69
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Figure 4 | Generation of neuronal cell models recapitulating the RAN-dependent translation of sense and antisense DPRs. (a) Diagrammatic

representations of constructs. (b) Sense G4C2 RNA foci stained with Cy3-labelled antisense C4G2 probe. DAPI was used to stain nuclei of neuronal

N2A cells in blue. Scale bar, 5 mm. (c) Western blots from N2A cells transfected with a control backbone plasmid (no DPR Ctrl) or the same plasmid

expressing either 15 uninterrupted G4C2-sense repeat (G4C2x15), 38 uninterrupted G4C2-sense-repeats (G4C2x38), 15 uninterrupted C4G2-antisense

repeat (C4G2x15) or 39 uninterrupted C4G2-antisense-repeats (C4G2x39). Membranes were probed with antibodies against poly-Gly-Pro DPRs,
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repeats (G4C2x15 or C4G2x39) with 30-end stop codons in each
of the three frames (Fig. 4a). The lengths of repeats were con-
firmed by sequencing and poly-acrylamide gel electrophoresis.
The nucleotide sequences are presented in Supplementary Fig. 4e.
In mammals, the bulk nuclear export of mRNA is predominantly

coupled to the recruitment of the TREX complex during
splicing53. Three C9ORF72 transcripts, each containing 4 or 10
introns, are transcribed from the C9ORF72 gene. The synthetic
repeat constructs were engineered without splicing elements or
intronic sequences to investigate the nuclear export potential of
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G4C2 and C4G2 repeat RNA sequences in repeat transcripts
independently of functional coupling to pre-mRNA splicing.
Transfections of mouse neuronal N2A cells with sense or
antisense repeat constructs led to the formation of RNA foci
for all repeat transcripts (Fig. 4b, data shown for the G4C2x38
construct) and to specific DPR production of poly-Gly-Pro
(expressed from both sense and antisense transcripts) and
poly-Gly-Ala (expressed from sense transcripts) for repeat
transcripts bearing 38 sense or 39 antisense repeats (Fig. 4c).
Interestingly, the expression of DPRs correlated with neurotoxic
effects in MTT cell proliferation assays, while the control plasmid
or the constructs expressing 15 sense or antisense repeats but no
DPRs did not exhibit significant cytotoxicity in the neuronal cells
(Fig. 4d). We conclude that the minimal G4C2x38 sense and
C4G2x39 antisense repeat RNA transcripts can be exported
into the cytoplasm independently of functional coupling to
pre-mRNA splicing and are substrates for subsequent RAN
translation of DPRs.

SRSF1 depletion inhibits DPRs production in neuronal cells.
A mouse SRSF1-knockdown plasmid co-expressing a GFP
reporter and a pre-miRNA cassette was engineered similarly to
the previously described human SRSF1-RNAi (Supplementary
Fig. 1b). Transfection of mouse neuronal N2A cells with
G4C2x38 or C4G2x39 repeat constructs and the mouse
SRSF1-RNAi plasmid led to a marked reduction in the RAN
translation of both sense and antisense DPRs (Fig. 5a, left panels
and Fig. 5b for quantification). The SRSF1-RNAi dependent
inhibition of DPR production does not depend on the
splicing activity of SRSF1 since the RAN constructs are devoid of
splicing sites. Moreover, the SRSF1 depletion is specific to
the hexanucleotide-repeat sequences since expression of synthetic
36-repeat poly-Gly-Pro (GP36) or 36-repeat poly-Gly-Ala
(GA36) DPRs using alternative codons (sequences available in
Supplementary Fig. 5) is not altered upon SRSF1 depletion
(Fig. 5a, right panels and Fig. 5c–d for respective quantifications
of GP36 and GA36). These results support our previous findings
that the depletion of SRSF1 did not ameliorate the rough eye
phenotypes (Fig. 2f) or the locomotor deficits (Fig. 2g) conferred
by G4C2-independent GR36 and PR36 DPRs expression in
Drosophila.

SRSF1 mediates mRNA nuclear export through binding to
NXF1 (refs 34,54). We previously showed that four arginine
residues lying in the unstructured linker between the two RNA
recognition motifs of SRSF1 (amino acids 11–196) are required
both for RNA nuclear export and interaction with NXF1, while

mutations of only two arginine residues lead to slightly reduced
binding to NXF1 in human embryonic kidney cells36. Similarly,
endogenous NXF1 is specifically immunoprecipitated in neuronal
N2A cells transfected with FLAG-tagged SRSF1 11-196 wild-type
or double R117,118A mutant (SRSF1-m2). In contrast, the
co-immunoprecipitation of NXF1 is severely impaired by the
quadruple R93,94,117,118A mutations of SRSF1 (SRSF1-m4)
(Fig. 5e). Co-transfection of the quadruple SRSF1-m4 dominant
mutant further led to a marked reduction in the production of
both sense and antisense DPRs while the wild-type sequence
or the variant bearing two arginine mutations (SRSF1-m2)
respectively had no or little effect (Fig. 5f). This was statistically
assessed for both poly-GP and poly-GA DPRs produced by sense
repeat transcripts (Fig. 5g) and poly-GP DPRs generated from
antisense repeat transcripts (Fig. 5h). Taken together our data
demonstrate that the expression of the C9ORF72 repeat
transcripts is dependent on a mechanism that requires the
interaction of SRSF1 with the nuclear export receptor NXF1.
Accordingly, both the depletion of SRSF1 and the expression
of the dominant negative mutant SRSF1-m4 suppress the
neurotoxicity mediated by expression of the C9ORF72
repeat transcripts in neuronal N2A cells (Fig. 5i). Supporting
this, RNAi-mediated depletion of the Drosophila NXF1
homologue, sbr, could rescue the locomotor deficits in larvae
and adult flies expressing G4C2x36 (Supplementary Fig. 6).

Repeat-sequestration of SRSF1 triggers RNA nuclear export.
Our result showing that expression of the SRSF1-m4 mutant
protein acts as a dominant negative mutant for DPR production
suggests that the SRSF1-m4 protein is sequestered onto the
hexanucleotide repeat transcripts instead of the endogenous
SRSF1 protein, preventing in turn interactions of repeat
transcripts with NXF1 and nuclear export. Using in vitro
UV cross-linking assays, we confirmed that the purified
recombinant hexa-histidine-tagged SRSF1-m4 protein retains the
ability to directly interact with synthetic 50-end 32P-radiolabelled
sense G4C2x5 (Fig. 6a) and antisense C4G2x5 (Fig. 6b) repeat
RNA. These interactions are specific since no binding of
RNA was detected in absence of UV–irradiation or with the
negative control protein MAGOH. We next sought to investigate
whether this was also true in live N2A cells using RNA
immunoprecipitation (RIP) assays. N2A cells were transfected
with FLAG control, FLAG-tagged SRSF1 or FLAG-tagged
SRSF1-m4 and various lengths of sense or antisense repeat
transcript constructs prior to fixing of ribonucleoprotein
complexes. Cell extracts were then subjected to anti-FLAG

Figure 5 | SRSF1 depletion and inhibition of the SRSF1:NXF1 interaction inhibit the production of DPRs in C9ORF72-ALS cell models. (a) Western

blots from N2A cells co-transfected with either a Ctrl or SRSF1-RNAi vector and control backbone plasmid (no DPR Ctrl) or the same plasmid expressing 38

uninterrupted G4C2-sense-repeats (G4C2x38) or 39 uninterrupted C4G2-antisense-repeats (C4G2x39). Sense/antisense poly-Gly-Pro and sense

poly-Gly-Ala DPR proteins are produced by internal repeat RAN translation in the absence of an initiating start codon (nucleotide sequences in

Supplementary Fig. 4). A hexanucleotide-repeat specificity control was provided by co-transfection of plasmids expressing poly-Gly-Ala (GA36) or

poly-Gly-Pro (GP36) independently of the G4C2/C4G2-repeats (nucleotide sequences in Supplementary Fig. 5) and either Ctrl or SRSF1-RNAi vectors.

(b) Western blots shown in a for the no DPR Ctrl, G4C2x38 and C4G2x39 experiments were quantified in three biological replicate experiments

(mean±s.e.m.; two-way ANOVA with Tukey’s correction for multiple comparisons; N¼ 3). (c,d) Western blots shown in a for the GP36 (c) and GA36

(d) panels were quantified in three biological replicate experiments (mean±s.e.m.; two-way ANOVA with Tukey’s correction for multiple comparisons;

N¼ 3). (e) Total extracts from N2A cells transfected with either FLAG control (FLAG ctrl) and either FLAG-tagged SRSF1 aa11-196 wild-type (SRSF1), SRSF1-

m2 or SRSF1-m4 are subjected to anti-FLAG immunoprecipitation. Co-immunoprecipitation of endogenous NXF1 is assessed using a-NXF1 antibodies.

(f) Western blots from N2A cells co-transfected with either G4C2x38 or C4G2x39 plasmids and control (FLAG Ctrl) or FLAG-tagged SRSF1 aa11-196

wild-type (SRSF1), SRSF1-m2 or SRSF1-m4. (g,h) Western blots shown in f for the G4C2-sense (g) and C4G2-antisense (h) repeat panels were

quantified in three biological replicate experiments (mean±s.e.m.; two-way ANOVA with Tukey’s correction for multiple comparisons; N¼ 3).

(i) MTT cell proliferation assay performed on N2A cells transfected with either G4C2x38 or C4G2x39 plasmids and Ctrl-RNAi, SRSF1-RNAi,

FLAG Ctrl, SRSF1 or SRSF1-m4 in three biological replicate experiments (mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple

comparisons; N (OD650 values)¼ 12). Statistical significance of data is indicated as follows: NS: non-significant, PZ0.05; *Po0.05; **Po0.01;

***Po0.001; ****Po0.0001.
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immunoprecipitation under the same conditions used in the
co-immunoprecipitation of NXF1 (Fig. 5e) prior to the qRT–PCR
analysis of SRSF1-crosslinked RNA molecules. Validating our RIP
assay, immunoprecipitation of both SRSF1 or SRSF1-m4 led to
specific co-precipitation of SMN, a known SRSF1-binder55,

but not of JUN, an intronless control transcript not expected to
be bound by SRSF1 (ref. 56), in N2A cells expressing either sense
(Fig. 6c) or antisense (Fig. 6d) repeat transcripts. In sharp
contrast, the levels of immunoprecipitated G4C2-sense or
C4G2-antisense repeat transcripts significantly increased with
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the number of hexanucleotide repeats (Fig. 6c,d) showing length-
dependent repeat-RNA sequestration of SRSF1 and SRSF1-m4 in
neuronal cells.

To evaluate the effects of SRSF1 depletion or SRSF1-m4
expression on the nuclear export of C9ORF72 repeat transcripts,
we measured the total and cytoplasmic levels of G4C2x38
transcripts in the presence of Ctrl or SRSF1-RNAi and SRSF1 or
SRSF1-m4 in transfected N2A cells. The quality of the cellular
fractionation was checked by immunoblotting using antibodies
against the chromatin-remodelling SSRP1 factor (Fig. 6e)
showing absence of significant nuclear contamination in the
cytoplasmic fractions. Total levels of G4C2x38 transcripts are
not significantly altered upon SRSF1-RNAi or expression of
SRSF1-m4 while the cytoplasmic levels of G4C2x38 transcripts
are markedly reduced in both conditions (Supplementary Fig. 7a).
Cytoplasmic repeat transcript levels were also normalized to total
levels to specifically assess the nuclear export process as in our
previous studies39,44. The cytoplasmic/total mRNA level ratios
are markedly reduced upon exposure to SRSF1-RNAi (Fig. 6f,
Ctrl-RNAi versus SRSF1-RNAi). Similarly, the co-transfection of
the SRSF1-m4 mutant which fails to interact with NXF1 led to
marked reduction in the normalized cytoplasmic repeat transcript
levels (Fig. 6f, SRSF1 versus SRSF1-m4). To extend this analysis
in vivo, Drosophila larvae expressing G4C2x36 and either Ctrl or
SRSF1-RNAi were subjected to the same fractionation (Fig. 6g)
and transcript analysis. As with cells, total levels of G4C2x36
transcripts are not significantly altered upon SRSF1-RNAi while
the cytoplasmic levels of G4C2x36 transcripts are markedly
reduced (Supplementary Fig. 7b). Consequently, the cytoplasmic/
total mRNA level ratio is significantly reduced upon exposure to
SRSF1-RNAi (Fig. 6h). Together these data demonstrate that
depleting SRSF1 or preventing its repeat RNA-sequestration and
interaction with NXF1 specifically inhibit the nuclear export of
hexanucleotide repeat transcripts in vitro and in vivo.

Antagonizing SRSF1 alters DPRs production in primary neurons.
We next sought to validate our findings in primary neurons. Due
to high background staining obtained with poly-GP and poly-GA
antibodies, we expressed V5 tags in all three frames downstream
of the G4C2x38 repeat sequence (Supplementary Fig. 8) to
simultaneously detect all DPR species using the more specific and
sensitive anti-V5 antibody. Cultured rat cortical neurons were
transfected with the G4C2x38-3xV5 construct and either the
Ctrl-RNAi, SRSF1-RNAi, SRSF1 or SRSF1-m4 expression
plasmids prior to immunofluorescence studies. The nucleotide
sequence targeted by the SRSF1-RNAi miRNA hairpin-1 is

identical in human, mouse and rat SRSF1 (Methods,
Supplementary Fig. 1b). Microscopy image examples of
DPR-negative and DPR-positive neurons are presented in Fig. 7a.
The proportion of DPR-positive neurons in approximately
100 successfully transfected neurons from two independent
experiments was quantified in each group and all counts were
performed blinded. Depletion of SRSF1 led to a significant
reduction (25%) in the proportion of neurons with RAN-
translated DPR-staining compared to neurons transfected with
Ctrl-RNAi (Fig. 7b). Inhibiting the sequestration of endogenous
SRSF1 and the interaction with NXF1 by recruitment of the
SRSF1-m4 dominant mutant also led to a similar and significant
reduction of neurons expressing DPRs compared to neurons
transfected with wild-type SRSF1 (Fig. 7c). Only cells showing
absence of DPRs were counted DPR-negative. It is very likely
that the effects of the SRSF1-RNAi or SRSF1-m4 expression
have been under-estimated since neurons expressing reduced
amounts of DPRs would still have been scored as DPR-positive.
We concluded that our findings in N2A cells were corroborated
in cultures of primary neurons.

SRSF1 depletion targets human C9ORF72 repeat transcripts. In
order to investigate the nuclear export of C9ORF72 transcripts in
the context of wild-type and repeat-expanded C9ORF72 genes,
we differentiated motor neurons from established induced-neural
progenitor cells (iNPCs) derived from sex/age matched control
and C9ORF72-ALS patient fibroblasts52. Both control and
C9ORF72-ALS induced iNeurons express the neuronal lineage
marker Tuj1 and exhibit the propensity to form complex
branching (Supplementary Fig. 9). High content imaging
analysis of axonal length (Fig. 8a) and soma cell size (Fig. 8b)
did not show any significant differences between control and
C9ORF72-ALS differentiated iNeurons under basal culture
conditions, in agreement with previous reports9,10. To test a
potential neuroprotective effect of SRSF1 depletion in disease
relevant cells, we next differentiated iNPCs into motor neurons
(iMNs), transduced them with an adenoviral vector expressing
RFP under the Hb9 promoter and cultured them either in
monoculture or in co-culture with control or ALS-derived
iAstrocytes. We did not observe increased cell death or
morphological abnormalities when the C9ORF72-ALS iMNs
were cultured without astrocytes (data not shown). Remarkably,
however, the transduction of SRSF1-RNAi lentivirus in iMNs
prior to co-cultures with C9ORF72-ALS iAstrocytes resulted in
significantly higher survival of iMNs against the astrocytic-
derived toxicity (Fig. 8c) indicating a neuroprotective effect of

Figure 6 | Depleting SRSF1 or inhibiting its repeat-RNA sequestration inhibit the nuclear export of C9ORF72 RAN-translated transcripts.

(a,b) Protein:RNA UV crosslinking assays using purified recombinant proteins and 32P-end-radiolabelled G4C2x5 (a) and C4G2x5 (b) repeat RNA probes.

Proteins are visualized on SDS–PAGE stained with Coomassie blue (left panels) and covalently linked RNA:protein complexes by autoradiography on

PhosphoImages (right panels). (c,d) RNA immunoprecipitation (RIP) assays. Formaldehyde was added to the medium of live N2A cells co-transfected with

G4C2x15, G4C2x38 (c), C4G2x15 or C4G2x39 (d) and either FLAG control (FLAG Ctrl), FLAG-tagged SRSF1 aa11-196 wild-type (SRSF1) or SRSF1-m4 were

subjected to anti-FLAG immunoprecipitation. Purified RNA was analysed by qRT–PCR following normalization to U1 snRNA levels in three biological

replicate experiments (mean±s.e.m.; two-way ANOVA with Tukey’s correction for multiple comparisons; N (qRT–PCR reactions)¼6). (e) Western blots of

N2A cells co-transfected with G4C2x38 and either Ctrl or SRSF1-RNAi plasmids or with G4C2x38 and either FLAG-tagged SRSF1 aa11-196 wild-type

(SRSF1) or SRSF1-m4, subjected to cellular fractionation using hypotonic lysis to yield cytoplasmic fractions. The chromatin remodelling SSRP1 factor is

used to check for potential nuclear contamination. (f) Cytoplasmic and total G4C2-repeat sense transcript levels were normalized to U1 snRNA levels in

three biological replicate experiments prior to plotting as a ratio to account for potential changes in mRNA transcription/stability (mean±s.e.m.; one-way

ANOVA with Tukey’s correction for multiple comparisons; N (qRT–PCR reactions)¼ 6). (g) Western blots of Drosophila expressing G4C2x36 and either

Ctrl or SRSF1-RNAi, subjected to cellular fractionation using hypotonic lysis to yield cytoplasmic fractions. Histone H3 is used to check for potential nuclear

contamination. (h) Cytoplasmic and total G4C2-repeat sense transcript levels were normalized to Tub84b levels in three biological replicate experiments

prior to plotting as a ratio to account for potential changes in mRNA transcription/stability (mean±s.e.m.; paired two-tailed t-test; N (qRT–PCR

reactions)¼ 3). In contrast to cytoplasmic levels, total levels of hexanucleotide repeat transcripts were not significantly altered upon expression of

SRSF1-m4 or depletion of SRSF1 in cells or flies (Supplementary Fig. 7). Statistical significance of data is indicated as follows: NS: non-significant, PZ0.05;

*Po0.05; **Po0.01; ***Po0.001; ****Po0.0001.
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SRSF1 depletion in motor neurons derived from C9ORF72-ALS
patients. Consistent with our previous data presented in
Drosophila and neuronal cells models, we also found that
depletion of SRSF1 in C9ORF72-ALS patient-derived iMNs
leads to specific reduction in the expression levels of poly-GP
DPRs although it appears less efficient in C9ORF72-ALS patient
78 (Fig. 8d).

We next quantified the total, nuclear and cytoplasmic levels of
intron-1-spliced C9ORF72 transcripts (using qPCR primers
annealing in exon-1 and exon-3)27,28 and unspliced C9ORF72
transcripts retaining intron-1 (using qPCR primers annealing in
exon-1 and in intron-1 upstream of the hexanucleotide repeat
expansion)27,28 to evaluate the potential impact of SRSF1-RNAi
on the splicing of intron-1 and on the nuclear export of
wild-type and pathological C9ORF72 transcripts. Depletion of the
chromatin-remodelling factor SSRP1 in the cytoplasmic fractions
and of actin in the nuclear fractions was used to validate the
quality of the subcellular fractionation (Fig. 8e). The relative
expression levels of SRSF1 mRNA were down regulated by
approximately 80% upon SRSF1-RNAi transduction of iNeurons

differentiated from either two control or two sex/age-matched
C9ORF72-ALS patient lines (Supplementary Fig. 10). No
significant changes in the total, nuclear or cytoplasmic levels of
intron-1-spliced transcripts were measured between control and
C9ORF72-ALS iNeurons transduced or not with SRSF1-RNAi
lentivirus (Fig. 8f). The mRNA level ratios of SRSF1-RNAi
(MOI5) over untreated (MOI0) were further plotted to assess the
net impact of the SRSF1-RNAi on each cellular compartment and
control or C9ORF72-ALS iNeurons (Fig. 8g). These data show
that the proportion of exon1-exon3 spliced transcripts is not
altered in C9ORF72-ALS neurons and that the presence of the
hexanucleotide repeat expansion does not affect the splicing of
intron-1, in full agreement with a recent study27. In addition, we
also show here that the SRSF1-RNAi has no effect on the nuclear
export or the splicing of intron-1 in the spliced transcripts that
lead to the production of the wild-type C9ORF72 protein. The
same experimental analysis was carried out for the C9ORF72
transcripts retaining intron-1 (Fig. 8h,i). We were unable to
detect significant levels (above non template control qRT–PCR
reactions) of intron-1-retaining C9ORF72 transcripts in the
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Figure 7 | Depleting SRSF1 or inhibiting its repeat-RNA sequestration and interaction with NXF1 inhibit the production of DPRs in primary neurons.

(a) Immunofluorescence microscopy of cultured rat cortical neurons. DPRs were detected in the red channel using anti-V5 and anti-mouse ALEXA594

antibodies. The Ctrl-RNAi and SRSF1-RNAi constructs co-express GFP while the FLAG-tagged SRSF1 proteins were stained using an anti-FLAG

antibody conjugated to FITC allowing detection and quantification of transfected neurons in the green channel. Scale bar: 5 mm. (b,c) Statistical

assessment of the cortical neuron counts was performed from approximately 100 transfected neurons for each group (Fisher’s exact test; N (transfected

neurons)¼Ctrl-RNAi: 95, SRSF1-RNAi: 112, SRSF1: 106, SRSF1-m4: 121).
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cytoplasm of control iNeurons consistent with the nuclear
retention of unspliced transcripts. In striking contrast, the
presence of the hexanucleotide repeat expansion in C9ORF72-
ALS patients triggers the nuclear export of C9ORF72 repeat
transcripts retaining intron-1 (Fig. 8h) consistent with our
previous data showing that the sequestration of SRSF1 on

synthetic hexanucleotide repeat expansions promotes nuclear
mRNA export through the interaction with NXF1 (Fig. 6).
Whilst the depletion of SRSF1 did not affect the total level and
biogenesis/stability of intron-1-retaining transcripts in control or
C9ORF72-ALS iNeurons, it specifically triggers a cytoplasmic
reduction and nuclear accumulation of pathological C9ORF72
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repeat transcripts in C9ORF72-ALS iNeurons (Fig. 8h,i). These
data demonstrate that the depletion of SRSF1 specifically inhibits
the nuclear export of expanded C9ORF72 repeat transcripts.
Taken together, our data show that the SRSF1 depletion has
no effect on the expression level, splicing or nuclear export of
wild-type spliced exon1-exon3 C9ORF72 transcripts while it
specifically inhibits the nuclear export of pathological C9ORF72
transcripts retaining the hexanucleotide repeats in intron-1.

Discussion
Microsatellite expansions of 3–6 nucleotides in coding and
non-coding regions of genes cause neurodegeneration through
complex mechanisms involving protein loss-of-function
and protein/RNA toxic gain-of-function mechanisms57.
The production of toxic polymeric repeat proteins by RAN
translation has now been characterized in multiple neuro-
degenerative disorders caused by microsatellite expansions
including spinocerebellar ataxia type 8 (SCA8)58, myotonic
dystrophy type 1 (DM1)58, Fragile X-associated tremor
and ataxia syndrome (FXTAS)59, C9ORF72-ALS6,13–16,27 and
Huntington disease (HD)60. However, the mechanisms involved
in the nuclear export of these disease-related repeat transcripts
are currently unknown.

We previously suggested that the sequestration of nuclear
export adaptors onto C9ORF72 repeat transcripts might trigger
the abnormal nuclear export of C9ORF72 repeat transcripts and
the subsequent RAN translation of DPRs in the cytoplasm12. In
this study, we identified for the first time the molecular
mechanism driving the nuclear export of pathological C9ORF72
repeat transcripts. We investigated whether the partial depletion
of two evolutionarily conserved nuclear export adaptors which
avidly interact with the hexanucleotide repeat transcripts12,
ALYREF and SRSF1, would mitigate DPR-mediated
neurotoxicity in an established Drosophila model of C9ORF72-
ALS16. We discovered that the partial depletion of SRSF1
prevents in vivo neurodegeneration and suppresses the
associated locomotor deficits while the depletion of ALYREF
only had marginal effects. The depletion of SRSF1 in

C9ORF72-ALS patient-derived motor neurons also conferred
neuroprotection of motor neurons in co-culture with C9ORF72-
ALS astrocytes. Moreover, we also showed that this intervention
does not affect the morphology or the growth of control and
C9ORF72-ALS patient-derived motor neurons. On the other
hand, the depletion of SRSF1 in patient-derived C9ORF72-ALS
astrocytes significantly suppressed motor neuron death in a
co-culture system. The mechanisms for suppression of astrocyte-
mediated neurotoxicity remain however to be determined. They
might involve a modification of the RNA or protein composition
in the extra-cellular exosomes released by astrocytes.

Using neuronal N2A cells, we demonstrated that the nuclear
export of C9ORF72 repeat transcripts and subsequent RAN
translation depends on the interaction of SRSF1 with the nuclear
export receptor NXF1. Depleting SRSF1 or inhibiting its
endogenous RNA-repeat sequestration and interaction with
NXF1 lead to a marked inhibition of the nuclear export of
C9ORF72 repeat transcripts and RAN translation of sense
and antisense DPRs to prevent C9ORF72 repeat-mediated
neurotoxicity. We also showed that the SRSF1-dependent
inhibition of the nuclear export of C9ORF72 repeat transcripts
leads to altered production of DPRs in Drosophila and patient-
derived motor neurons. We noted some variability in the
efficiency of the SRSF1 depletion in patient-derived motor
neurons. This might be due to variation between expression
levels of DPRs and/or genetic background of patients-derived
cells. Importantly, the depletion of SRSF1 in control or
C9ORF72-ALS patient-derived neurons does not affect the
expression levels or the nuclear export of intron-1-spliced
transcripts required for the translation of the wild-type
C9ORF72 protein. This also indicates that the nuclear export of
non-repeat C9ORF72 transcripts does not depend on the nuclear
export adaptor SRSF1. In sharp contrast to control neurons, the
presence of the hexanucleotide repeat expansion in intron-1 of
C9ORF72 transcripts led to SRSF1-dependent mRNA nuclear
export, while depletion of SRSF1 specifically inhibits the nuclear
export but not the levels or splicing of C9ORF72 transcripts
retaining expanded hexanucleotide repeats in intron-1. Taking

Figure 8 | Depletion of SRSF1 specifically inhibits the nuclear export of pathological C9ORF72 repeat transcripts in patient-derived neurons. (a) The

axonal length of patient-derived iMNs treated or not with SRSF1-RNAi was assessed by high content imaging in three biological replicate experiments

(mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple comparisons, NS: non-significant; N (average axon length/well)¼9). (b) The cell

body area of patient-derived iMNs treated or not with SRSF1-RNAi was assessed by high content imaging in three biological replicate experiments

(mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple comparisons; N (average cell body area/well)¼9). (c) The survival of patient-derived

Ctrl or C9ORF72-ALS iMNs treated or not with SRSF1-RNAi was quantified in co-cultures with patient-derived Ctrl or C9ORF72-ALS iAstrocytes in six

biological replicate experiments at day 4 (mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple comparisons; N (iMNs)¼Ctrl-pat209:

142/165/174/117/122/168, C9-ALS-pat78: 77/65/41/68/71/70; C9-ALS-pat78þ SRSF1-RNAi: 106/84/81/97/113/83; C9-ALS-pat201: 68/69/68/62/

66/74; C9-ALS-pat201þ SRSF1-RNAi: 131/104/96/82/111/104). (d) Total protein extracts from HEK cells transfected with either Ctrl or GP36 plasmids

and patient-derived iMNs transduced (MOI¼ 5) or not (MOI¼0) with LV-SRSF1-RNAi viruses are analysed by dot blots using poly-GP DPRs and loading

control a-tubulin antibodies. Scale bar: 6 mm. (e) Western blots of iNeurons differentiated from control (Ctrl-pat 154, Ctrl-pat155) and C9ORF72-ALS

(C9-ALS-pat78, C9-ALS-pat183) patients treated or not with LV-SRSF1-RNAi (MOI 0 or 5) were subjected to cellular fractionation using hypotonic lysis to

yield cytoplasmic fractions. The chromatin remodelling SSRP1 factor is used to check for potential nuclear contamination in cytoplasmic fractions. Depletion

of actin in nuclear fractions was used to check for quality of the nuclear fractions. The efficacy of SRSF1-RNAi was also validated by qRT–PCR achieving

B80% SRSF1 mRNA knockdown (Supplementary Fig. 10). (f) Total, nuclear and cytoplasmic levels of intron1-spliced C9ORF72 transcripts (as measured by

the exon1-exon3 junction) were quantified in two technical replicates for each of two biological replicate experiments by qRT–PCR following normalization

to U1 snRNA levels and to 100% in control patients at MOI0 (mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple comparisons, NS: non-

significant; N (qRT–PCR reactions)¼ 8). (g) Intron1-spliced C9ORF72 transcripts levels normalized to U1 snRNA levels (d) were plotted as a ratio SRSF1-

RNAi MOI5 over MOI0 to evaluate the specific effect due to the SRSF1-RNAi (mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple

comparisons; N (qRT–PCR reactions)¼8). (h) Total, nuclear and cytoplasmic levels of unspliced C9ORF72 transcripts retaining intron1 (as measured by

the exon1–intron1 junction) were quantified in two technical replicates for each of two biological replicate experiments by qRT–PCR following normalization

to U1 snRNA levels and to 100% for control patients at MOI0 (mean±s.e.m.; one-way ANOVA with Tukey’s correction for multiple comparisons,

NS: non-significant; N (qRT–PCR reactions)¼ 8). (i) Unspliced C9ORF72 transcripts retaining intron1 levels normalized to U1 snRNA levels (f) were plotted

as a ratio SRSF1-RNAi MOI5 over MOI0 to evaluate the specific effect due to the SRSF1-RNAi (mean±s.e.m.; one-way ANOVA with Tukey’s correction for

multiple comparisons; N (qRT–PCR reactions)¼ 8). Statistical significance of data is indicated as follows: NS: non-significant, PZ0.05; *Po0.05; **Po0.01;

***Po0.001; ****Po0.0001.
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these data together, we show that sequestration of SRSF1
onto C9ORF72 hexanucleotide repeats is able to license the
NXF1-dependent nuclear export of pathological C9ORF72 repeat
transcripts without functional coupling of the nuclear export
process to pre-mRNA splicing. This explains in turn why the
depletion of SRSF1 has no effect on the level, intron-1-splicing or
nuclear export of wild-type C9ORF72 transcripts.

In conclusion, we have elucidated for the first time the
molecular mechanism driving the nuclear export of pathological
C9ORF72 repeat transcripts which allows for RAN translation
of dipeptide repeat proteins in the cytoplasm (Fig. 9a). The
depletion of SRSF1 specifically inhibits the nuclear export of the
pathologically expanded C9ORF72 transcripts without interfering
with biogenesis/processing of the wild-type C9ORF72 transcripts
(Fig. 9b). The expression of the engineered SRSF1-m4 protein,

which retains specific ability to be sequestered on repeat
transcripts but fails to effectively interact with NXF1, also inhibits
the nuclear export of repeat transcripts and the production of
DPRs. (Fig. 9c). Both these interventions represent promising
prospects for the development of an effective neuroprotective
strategy in C9ORF72-related ALS. The effects of antagonizing
SRSF1 in the vertebrate brain remain to be elucidated in wild-type
mice as well as in murine C9ORF72-ALS models. Interestingly, it
was recently shown that whilst SRSF1 directly binds thousands of
transcripts, the depletion of SRSF1 in isolation affects the nuclear
export of only 225 transcripts (o1% transcribed coding genes)
due to the presence of 6 additional SRSF factors (SRSF2-7) which
act as redundant NXF1-dependent nuclear export adaptors46.
The cellular pathways causing C9ORF72 repeat-mediated
neurodegeneration and the precise mechanism(s) of
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Figure 9 | Model for the nuclear export of pathological C9ORF72 hexanucleotide repeat transcripts and therapeutic manipulation. (a) The nuclear

export of sense and antisense C9ORF72 transcripts retaining expanded hexanucleotide repeats in intron1 specifically depend on the sequestration of SRSF1

and its interaction with the nuclear export receptor NXF1. In contrast, the nuclear export of intron1-spliced C9ORF72 transcripts required for the production

of the C9ORF72 protein does not involve the interaction of SRSF1 with NXF1 however the nuclear export adaptor(s) (NEA) remain to be identified.

(b) The depletion of SRSF1 specifically inhibits the nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats in intron1, likely due to

a reduction in the sequestration of endogenous SRSF1 onto the C9ORF72 hexanucleotide repeats and failure to abnormally remodel NXF1 in a high

RNA-binding mode, while it does not affect the expression levels and splicing/retention of intron1. Moreover, the depletion of SRSF1 does not affect the

expression levels, the splicing of intron1 or the nuclear export of wild-type intron1-spliced C9ORF72 transcripts required for the production of the C9ORF72

protein. (c) Over-expression of the SRSF1-m4 protein, which fails to interact efficiently with NXF1, competes endogenous SRSF1 for sequestration onto

hexanucleotide repeats preventing in turn interactions with NXF1 and nuclear export of C9ORF72 repeat transcripts.
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neuroprotection conferred by the targeting of SRSF1 remain to be
elucidated in future studies.

Inhibiting the nuclear export of repeat transcripts might
also confer neuroprotection in other microsatellite expansion
disorders. However, it will remain essential to determine
pathophysiological contributions between polymeric repeat
protein production and RNA-mediated toxicity by nuclear
retention of transcripts and/or sequestration of RNA-processing
factors on repeat transcripts. While expression of repeat proteins
can kill cells in vitro, it is difficult to evaluate the levels of
RAN-translation in patients and the thresholds required for
triggering neurotoxicity which will differ depending on the nature
of the repeat expansions, the disease in question and the cell
types. There is however growing evidence for a pathogenic role of
RAN-translation and the data presented here fully support this.
For example, FXTAS was initially thought to be caused by
intranuclear retention of transcripts and sequestration of splicing
factors61,62. However, the discovery of RAN translation in the
same model challenged this view59. Similarly, in C9ORF72-ALS,
a 10-fold increase in the number of intranuclear RNA foci does
not significantly alter survival or global RNA processing, while
expression of DPRs caused neurodegeneration27 in full agreement
with the data presented here. Partial depletion of individual
nuclear export adaptors does not appear to be detrimental to the
functioning of higher eukaryotic cells. Therefore, they might
constitute viable therapeutic targets for inhibiting the nuclear
export of repeat transcripts and the production of toxic repeat
proteins, particularly in neurodegenerative diseases where
RAN-translation appears to have a prominent pathological role.

Methods
Drosophila husbandry and locomotor assays. Drosophila were raised under
standard conditions on a molasses, cornmeal and yeast based food in 12 h:12 h
light:dark cycle at 25 �C unless otherwise stated. All C9ORF72 transgenic
lines16 were a gift from Adrian Isaacs and Linda Partridge (University College
London). GMR-GAL4, D42-GAL4, nSyb-GAL4, da-GAL4, UAS-sbr-RNAi
[P{TRiP.HM05135}attP2] and UAS-luciferase-RNAi [P{TRiP.JF01355}attP2], used
as control-RNAi, were obtained from the Bloomington Drosophila Stock Centre
(Bloomington, IN). Other UAS-RNAi lines were obtained from the Vienna
Drosophila Resource Centre. References and sequences of insertions are provided
in Supplementary Note 1. For larval crawling assays, transgenes were expressed by
nSyb-GAL4 and animals were grown at 29 �C. Wandering third instar larvae were
collected from vials, rinsed with distilled water, and placed in petri dishes with a 1%
agarose matrix. Larvae were observed directly for 2 min and the number of
peristaltic waves recorded. Climbing assays were performed as described63 with
transgenic expression induced by D42-GAL4. Adult flies were tested 1-3 days after
eclosion. Male flies were used for all experiments.

Drosophila light microscopy imaging and scanning electron microscopy. Eye
phenotypes were analysed by induction of transgene expression by GMR-GAL4
raised at 25 �C. For light microscopy of Drosophila eyes, stacks of images were
collected on a Nikon motorized SMZ stereo zoom microscope fitted with 1x Apo
lens. Extended focus images were generated using Nikon Elements software.
Scanning electron microscopy (SEM) was performed according to a standard
protocol64 and images were captured using a Philips XL-20 SEM microscope.
All animals of a given genotype displayed essentially identical phenotypes and
randomly selected representative images are shown.

Plasmids. FLAG-tagged SRSF1/SF2/ASF plasmids were generated in ref. 36.
MicroRNA sequences were designed using the ‘miR RNAi’ Block-IT RNAi
designer tool (ThermoFisher) at Sequences are presented in Supplementary Note 2.
Synthesized oligonucleotides (Sigma) were annealed and ligated into pcDNA6.2-
GW/EmGFP using the BLOCK-iT PolII-miR-RNAi Expression Vector Kit with
EmGFP (ThermoFisher, catalogue number K4936-00). For chaining, BamHI/XhoI-
restricted pre-miR2-RNAi cassettes were subcloned into pcDNA6.2-GW/EmGFP-
SRSF1-miR1 using BglII/XhoI. The PCR fragments encompassing EmGFP and the
chained SRSF1 pre-miRNA cassette were additionally cloned into the lentiviral
plasmid SIN-PGK-cPPT-GDNF-WHV(9)65 using SpeI/XhoI.

Uninterrupted C9ORF72 hexanucleotide sense GGGGCCx15 or GGGGCCx38
and antisense CCCCGGx15 or CCCCGGx39 repeats were built using the
synthetic oligonucleotides 50-(GGGGCC)15-30 and 50-CCCC-(GGCCCC)14-GG-30 .
Oligonucleotides were annealed by heating to 99 �C for 30 min and cooling

0.5 �C min� 1 to ambient with incubation at 70 �C for 10 min. Oligonucleotides
were phosphorylated with T4-Polynucleotide Kinase (New England Biolabs),
ligated using T4 DNA Ligase (ThernoFisher) and treated with Mung Bean nuclease
(New England Biolabs) for blunt ligation. The band corresponding to trimeric
oligonucleotides was gel-purified and ligated into pcDNA3.1 (Invitrogen) with
blunted EcoRI ends to allow cloning in both sense and antisense orientation.
Sequences are presented in Supplementary Fig. 4.

Synthetic sequences encoding poly-Gly-Pro and poly-Gly-Ala x36 DPRs
independently of G4C2 repeats were first cloned into pcDNA3.1 using EcoRI/NotI.
Synthetic sequences encoding poly-Gly-Pro and poly-Gly-Ala x36 were subcloned
using BamHI/NotI into pCI-neo-V5-N using BclI/NotI. BclI restriction site
was previously introduced into pCI-neo-V5-N by site directed mutagenesis
using forward actctagaggtaccacgtgatcattctcgagggtgctatccaggc and reverse
gcctggatagcaccctcgagaatgatcacgtggtacctctagagt primers.

Lentivirus production. Twenty 10 cm dishes seeded with 3� 106 HEK293T
cells/dish were each transfected with 13 mg pCMVDR8.92, 3.75 mg pM2G, 3 mg
pRSV and 13mg SIN-CMV-miRNA using calcium phosphate transfection65. Media
was replaced after 12 and 48 h later, supernatant was collected, filtered through a
0.45 mm filter and centrifuged at 19,000 r.p.m. for 90 min at 4 �C using a SW28
rotor (Beckman). The viral pellet was re-suspended in PBS with 1% BSA and stored
at � 80’C. The biological titre of the virus was determined by transducing HeLa
cells with 10� 2, 10� 3 and 10� 4 dilutions of the vector. 72 h post-transduction, the
percentage of GFP positive cells was measured with a Fluorescent-Activated cell
sorter (FACS, LSRII). The biological titre is expressed as the number of transducing
units per ml (TU/ml) and is calculated as follows: Vector titer¼ [(% positive
cells� total number of cells)� dilution factor� 2].

Tissue culture. Cells were maintained in a 37 �C incubator with 5% CO2.
HEK293T cells were cultured in Dulbecco’s Modified Eagle Medium (Sigma)
supplemented with 10% fetal bovine serum (FBS) (Gibco) and 5 U ml� 1 Penstrep
(Lonza). Neuro-2a (N2A) (ATCC) cells were cultured in Dulbecco’s Modified Eagle
Medium (Sigma) supplemented with 10% FBS (Gibco), 5 U ml� 1 Penstrep (Lonza)
and 5 mM sodium pyruvate.

Hb9GFP mouse stem cells were cultured as described66 and differentiated into
motor neurons with 2 mM retinoic acid (Sigma) and 1 mM Smoothened Agonist
(SAG) (Millipore) for 5 days. Embryoid bodies were then dissociated with papain
and sorted using the FACSAria III (BD Biosciences).

For patient-derived cell cultures, informed consent was obtained from all
subjects before sample collection (Study number STH16573, Research Ethics
Committee reference 12/YH/0330). Human patient-derived astrocytes (iAstrocytes)
were differentiated from induced Neural Progenitor Cells (iNPCs) as described52

and cultured in DMEM Glutamax (Gibco) with 10% FBS (Sigma) and 0.02% N2
(Invitrogen). Human patient-derived neurons (iNeurons) were differentiated from
the previously established iNPCs using a modified version of the protocol described
in reference52. Briefly, 30,000 iNPCs were plated in a 6-well plate coated with
fibronectin (Millipore) and expanded to 70–80% confluence. At confluence, iNPC
medium was replaced with neuron differentiation medium (DMEM/F-12 with
Glutamax supplemented with 1%N2, 2%B27 (Gibco)). On day one of
differentiation the cells were treated with 2.5 mM of DAPT (Tocris). On day three
the neuron differentiation medium is supplemented with 1 mM retinoic acid
(Sigma), 0.5 mM Smoothened Agonist (SAG) (Millipore) and 2.5 mM Forskolin
(Sigma) for 7 days. To obtain iMotor Neurons, iNeurons were re-plated on
fibronectin and cultured in retinoic acid, SAG and Forskolin for 14 more days with
addition of BDNF, CNTF and GDNF (all at 20 ng ml� 1) for the last 10 days of
differentiation. For SRSF1 knockdown, cells were transduced with lentivirus
expressing control GFP or human SRSF1-RNAi co-expressing GFP at an MOI of 5
at day 14 along with the HB9:RFP adenovirus.

Co-cultures of patient-derived iAstrocytes and motor neurons. For Hb9GFP
motor neuron and patient-derived iAstrocyte co-cultures, 20,000 induced neural
progenitor cells (iNPCs) were plated in 6-well plates in astrocyte medium. The day
after plating, cells were transduced with lentivirus expressing control GFP or
human SRSF1-RNAi at an MOI of 5, 7 or 10. The human SRSF1-RNAi virus also
co-expressed GFP for evaluating transduction efficiency. Co-culture experiments
were performed using GFPþ motor neurons from Hb9GFPþ mouse stem cells
and i-Astrocytes transduced with an adenovirus expressing red fluorescent protein
(Ad-RFP). Seven days post-transduction with Ad-RFP and LV-SRSF1-RNAi,
iAstrocytes were plated at a density of 10,000 cell per well. The day after, Hb9GFP
embryoid bodies were dissociated and sorted for GFPþ cells. 10,000 GFPþ motor
neurons were plated onto the astrocytes in motor neuron medium consisting of
DMEM/F12, 2% horse serum (Invitrogen), 2% N2, 2% B27 plus GDNF (Invitrogen;
10 ng ml� 1), BDNF (Invitrogen; 10 ng ml� 1), CNTF (Invitrogen; 10 ng ml� 1) and
IGF-1 (Invitrogen; 10 ng ml� 1). Nine 10� images/well to cover the whole well
surface were acquired daily for 3 days using the high content imaging system
InCell 2000 (GE Healthcare), gathering data on neuronal cell size and number,
axonal length and neurite branching. Data analysis was performed using the
Columbus software (PerkinElmer). Data are presented for 3 days of co-culture.
The programme designed for co-culture analysis only takes into account GFPþ
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cells with at least one projection to exclude counting cell debris. For iMN on
iAstrocyte cultures, iAstrocytes were plated in 384-well plates 24 h before plating
1,000 FACS-sorted iMNs. Cultures were maintained for 4 days. Data are presented
for 4 days of co-culture.

Western blot and dot blot analysis. HEK cells were transfected for 72 h with
650 ng pcDNA6.2-GW/EmGFP-Control-miR-RNAi, pCDNA6.2-GW/EmGFP-
human SRSF1-miR1þ 2-RNAi or LV-EmGFP-human SRSF1-miR1þ 2-RNAi
constructs and 50 ng p3XFLAG/human-SRSF1 using 3.5 mg PEI/ml media and one
tenth medium volume of OptiMEM. Neuro-2a cells were split into each well of
24-well plates (75,000 cells per well) and transfected for 72 h with 350 ng
pcDNA6.2-GW/EmGFP-Control-miR-RNAi (ThermoFisher), pcDNA6.2-GW/
EmGFP-mouse SRSF1-miR1þ 2-RNAi, p3xFLAG, p3xFLAG/SRSF1(11-196),
p3xFLAG/SRSF1(11-196)-m2 or p3xFLAG/SRSF1(11-196)-m4 and 350 ng
pcDNA3.1/RAN-G4C2x38-sense or RAN-C4G2x39-antisense using 3 mg PEI/1 mg
DNA and one tenth medium volume OptiMEM.

Proteins were extracted 72 h post-transfection. Cells were washed in ice-cold
phosphate-buffered saline (PBS) and scraped into ice-cold lysis buffer (50 mM
Hepes pH7.5, 150 mM NaCl, 10% glycerol, 0.5% Triton X-100, 1 mM EDTA, 1 mM
DTT, protease inhibitor cocktail (Sigma)). Cells were left to lyse on ice for 10 min
followed by centrifugation at 17,000 g at 4 �C for five minutes. Protein extracts
were quantified using Bradford Reagent (BioRAD), resolved by SDS–PAGE,
electroblotted onto nitrocellulose membrane and probed using the relevant
primary antibody. Human/mouse SRSF1/SF2 [1:1,000 dilution] (Cell Signaling
#8241), poly-Gly-Pro [1:10,000 dilution] (kindly received from Prof Stuart
Pickering Brown) and Histone H3 (Santa Cruz sc-10809) primary antibodies were
detected with horseradish peroxidase (HRP)-conjugated rabbit secondary antibody
(Promega), while a-tubulin [1:10,000 dilution] (Sigma, clone DM1A), FLAG
[1:2,000 dilution] (Sigma F1804, clone M2), ALYREF [1:2,000 dilution] (Sigma
A9979, clone 11G5) and poly-Gly-Ala [1:500 dilution] (kindly provided from Prof
Dieter Edbauer) antibodies were detected using HRP-conjugated mouse secondary
antibody (Promega). Uncropped western blot images are shown in Supplementary
Figs 11–16. For dot blot analysis, 50 mg total protein extracts prepared in ice-cold
lysis buffer were loaded onto a nitrocellulose membrane using a microfiltration
apparatus (Biorad), sliced into strips and analysed by immunoblotting.

Cytoplasmic fractionation. Neuro-2a cells were split into 6-well plates
(2� 106 cells per well) and transfected for 72 h with 1 mg pcDNA6.2-GW/EmGFP-
Control-miR-RNAi, pcDNA6.2-GW/EmGFP-mouse SRSF1-miR1þ 2-RNAi,
p3xFLAG/SRSF1(11-196), or p3xFLAG/SRSF1(11-196)-m4 and 1 mg pcDNA3.1/
RAN-G4C2x38-sense or RAN-C4G2x39-antisense using 3 mg PEI/1 mg DNA and
one tenth medium volume OptiMEM. iNeurons were cultured in 6-well plates
and transduced with 5MOI human LV-SRSF1-RNAi lentivirus for 5 days.

For the cytoplasmic fractionation, cells were collected in DEPC PBS and
pelleted by centrifugation at 800 g for 5 min. Cell pellets were quickly washed with
hypotonic lysis buffer (10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM
DTT) and lysed in hypotonic lysis buffer containing 0.16 U ml� 1 Ribosafe RNase
inhibitors (Bioline), 2 mM PMSF (Sigma) and SIGMAFAST Protease Inhibitor
Cocktail tablets, EDTA free (Sigma). For flies, da-GAL4 was used to drive transgene
expression in all tissues, and 10 third instar larvae were homogenized and lysed
using the same buffer and a dounce homogenizer. All lysates underwent differential
centrifugation (1,500 g, 3 min, 4 �C then 3,500 g r.p.m., 8 min, 4 �C and then
17,000 g, 1 min, 4 �C) transferring the supernatants to fresh tubes after each
centrifugation. Nuclear pellets obtained after centrifugation at 1,500 g for 3 min
were lysed in Reporter lysis buffer (Promega) for 10 min on ice before centrifugation
at 17,000 g, 5 min, 4 �C. Total fractions were collected in Reporter lysis buffer
containing 0.16 Uml� 1 Ribosafe RNase inhibitors (Bioline), 2 mM PMSF (Sigma)
and Protease Inhibitors prior to lysis for 10 min on ice before centrifugation at
17,000 g, 5 min, 4 �C. Total and fractionated extracts were added to PureZOL to
extract RNA. Equal volumes of total, nuclear and cytoplasmic lysates were subjected
to western immunoblotting using SSRP1 and a-tubulin (Neuro-2a), SSRP1 and Actin
(iNeurons), or a-tubulin and a-Histone H3 (Drosophila) antibodies.

Quantitative RT–PCR. For Drosophila, total RNA was extracted from crushed
larvae or adult flies using 800ml PureZOL (BioRAD). Lysate was cleared by
centrifugation for 10 min at 12,000 g at 4 �C. 200ml of chloroform was added and
tubes were vigorously shaken for 15 s. After 10 min incubation, tubes were
centrifuged at 12,000 g for 10 min at 4 �C and supernatants (400ml) were collected.
RNA was precipitated for 30 min at room temperature with 2ml Glycogen (5mgml� 1,
Ambion) and 500ml isopropanol and pelleted at 12,000 g for 20 min at 4 �C. Pellets
were washed with 70% DEPC Ethanol and re-suspended in 40ml DEPC water.

For HEK cells, 50,000 cells were split into each well of 24-well plates and
transfected with 700 ng pcDNA6.2-GW/EmGFP-Control or human SRSF1-miR-
RNAi constructs using 3.5 mg PEI/ml media and one tenth medium volume
OptiMEM (ThermoFisher). For iAstrocytes, 20,000 induced neural progenitor cells
(iNPCs) were plated in 6-well plates in astrocyte medium. The day after plating,
3 wells were transduced with lentivirus expressing human SRSF1-RNAi at an MOI
of 5. Total RNA was extracted from HEK cells 72 h after transfection or iAstrocytes
5 days after transduction and RNA extracted using the EZ Total RNA Isolation

Kit (Geneflow). Briefly, cells were washed in DEPC-treated PBS before lysis in the
culture dish using the denaturing solution. Lysed cells collected and equal volume
extraction buffer added, vigorously shaken, incubated at room temperature for
10 min and then centrifuged for 15 min at 4 �C and 12,000 g. RNA was precipitated
using equal volume of isopropanol overnight at � 20 �C, pelleted at 12,000 g,
4 �C for 15 min, washed with 70% DEPC Ethanol and re-suspended in 22.5 ml
DEPC water.

All RNA samples were treated with DNaseI (Roche) and quantified using a
Nanodrop (NanoDropTechnologies). Following quantification, 2 mg RNA was
converted to cDNA using BioScript Reverse Transcriptase (Bioline). qRT–PCR
primers were designed using Primer-BLAST67 (NCBI) and validated using a 1 in
4 serial template dilution series (standard curve with R240.97). qRT–PCR
reactions were performed in duplicate using the Brilliant III Ultra-Fast SYBR
Green QPCR Master Mix (Agilent Technologies) on a MX3000P QPCR system
(Statagene) using an initial denaturation step, 45 cycles of amplification (95 �C for
30 s; 60 �C for 30 s; 72 �C for 1 min) prior to recording melting curves. qRT–PCR
data was analysed using MxPro (Stratagene) and GraphPad Prism (Version 6).
The sequences of qPCR primers are provided in Supplementary Note 3 including
citations of refs 68–70.

MTT cell proliferation assay. Neuro-2a cells were split into 24-well plates
(30,000 cells per well). Each plate contained 4 wells with only media to serve as a
blank and 4 wells/treatment. Cells were transfected for 72 h with either 500 ng
pcDNA3.1, pcDNA3.1/RAN-G4C2x15, RAN-G4C2x38-sense, RAN-C4G2x15 or
RAN-C4G2x39-antisense; or 250 ng pcDNA6.2-GW/EmGFP-Control-miR-RNAi,
pcDNA6.2-GW/EmGFP-mouse SRSF1-miR1þ 2-RNAi, p3xFLAG/SRSF1(11-196)
or p3xFLAG/SRSF1(11-196)-m4 and 250 ng pcDNA3.1, pcDNA3.1/RAN-G4C2x38-
sense or RAN-C4G2x39-antisense.

250 mg Thiazolyl Blue Tetrazolum Bromide reagent (MTT) was added to each
well and incubated in the dark at 37 �C for 1 h. Cells were subsequently lysed with
equal volume MTT lysis buffer (20%SDS, 50% Dimethylformamide (DMF)) and
incubated, shaking, at room temperature for 1 h. Absorbance at 595 nm was then
assessed with a PHERAstar FS (BMG Labtech). Absorbance data was retrieved
using PHERAstar MARS (BMG Labtech).

Immunofluorescence of rat cortical neurons. Cortical neurons were isolated,
cultured and transfected as described21. Briefly, neurons were transfected using
Lipofectamine LTX with PLUS reagent according to manufacturer’s instructions
(Thermofisher; DNA:PLUS:LTX ratio of 1:0.5:0.5 with 2mg DNA/100,000 cells per
cm2). After 6 h, the transfection mix was replaced with conditioned medium.
Immunofluorescence staining of rat cortical neurons was performed 72 h after
transfection as described21 with the exception that cells were blocked with 4% goat
serum in PBS for 2 h at room temperature and incubated overnight at 4 �C with the
V5 antibody [1:1,000 dilution] (ThermoFisher Scientific #R96025) in PBS containing
4% goat serum. Cells were washed three times with PBS containing 4% goat serum
and incubated for 1 h with PBS containing 4% goat serum & goat
anti-mouse secondary antibody, Alexa Fluor 594 [1:1,000 dilution] (ThermoFisher
Scientific). Cells transfected with pcDNA6.2-GW/EmGFP-Control or human SRSF1-
miR-RNAi constructs were subsequently stained with Hoechst 33342 for 10 min at
room temperature, washed 3 times with PBS and mounted in fluorescence mounting
medium (Dako). After incubation in the secondary antibody, cells transfected with
p3xFLAG/SRSF1(11-196) or p3xFLAG/SRSF1(11-196)-m4 were washed 3 times
with PBS containing 4% goat serum, incubated at room temperature for one hour
with PBS containing 4% goat serum & anti-FLAG M2-FITC antibody (10mg ml� 1;
Sigma-Aldrich #F4049) and subsequently stained with Hoechst 33342. Cells were
then washed 3 times with PBS and mounted.

Co-Immunoprecipitation. Cells were split into one 10 cm plates/treatment
(1.5� 106 cells per plate) and transfected with 15 mg p3xFLAG, p3xFLAG/
SRSF1(11-196), p3xFLAG/SRSF1(11-196)-m2 or p3xFLAG/SRSF1(11-196)-m4
using 3 mg PEI/1 mg DNA and one tenth medium volume OptiMEM.

Proteins were extracted from Neuro-2a cells 48 h post-transfection. Cells were
washed in ice cold PBS, scraped into 500ml ice cold lysis buffer, passed through a
21G gauge needle 10 times and left to lyse on ice for 10 min. Lysed cells were
cleared by centrifugation at 17,000 g at 4 �C for 5 min and protein extracts were
quantified using Bradford Reagent. 2 mg total protein in 1 ml lysis buffer was
incubated with 30ml anti-FLAGM2 affinity resin (Sigma A2220) (which had been
blocked overnight with 1% BSA in IP lysis buffer) for 2 h at 4 �C on a rotating
wheel. Beads were washed 5 times with lysis buffer and eluted in 50 ml IP lysis
buffer supplemented with 100mg ml� 1 3xFLAG peptide (Sigma #F4799) for
30 min at 4 �C on a rotating wheel. 30mg total protein and 15 ml eluates were
subjected to western immunoblotting using FLAG, NXF1 clone 53H8 [1:2,000]
(Abcam ab50609) and a-tubulin antibodies.

RNA:protein UV crosslinking assays. Recombinant proteins expressed in 1.5 l of
Escherichia coli BL21 (DE3)-RP (Novagen) cultures were purified on TALON/
Cobalt beads (Clontech) in 1 M NaCl containing buffers (Lysis buffer: 50 mM
TRIS-HCl pH 8.0, 1 M NaCl, 0.5% Triton X-100; Wash buffer: 50 mM TRIS-HCl
pH 8.0, 1 M NaCl, 0.5% Triton X-100, 5 mM imidazole). Elution was achieved with
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imidazole (50 mM TRIS-HCl pH 8.0, 500 mM NaCl, 200 mM imidazole) and
50 mM L-Arg/L-Glu mixture to prevent protein precipitation while retaining
interaction with RNA and NXF1 (refs 35,36). 2 mg purified proteins were incubated
in RNA-binding buffer (15 mM HEPES at pH 7.9, 150 mM NaCl, 0.2 mM EDTA,
5 mM MgCl2, 0.05% Tween 20, 10% glycerol) with 20 nmoles 50-end
32P-radiolabelled probes (RNA oligonucleotides purchased from Dharmacon) for
10 min at room temperature and 10 min on ice prior to UV-crosslinking or not
(10 min, 1.5 J cm� 2). Binding reactions were resolved on SDS–PAGE prior to
analysis by Coomassie staining and Phosphoimaging.

RNA immunoprecipitation assays. Cells were split into one T-175 flask/
treatment (5� 106 cells per plate) and transfected with 30 mg p3xFLAG,
p3xFLAG/SRSF1(11-196) or p3xFLAG/SRSF1(11-196)-m4 and 10 mg pcDNA3.1/
RAN-G4C2x15-sense, RAN-G4C2x38-sense, RAN-G4C2x15-antisense or
RAN-C4G2x39-antisense using 3 mg PEI/1 mg PEI and one tenth volume
OptiMEM. 1% formaldehyde was added to the medium of live cells for 10 min 48 h
post-transfection. Formaldehyde was quenched with 250 mM Glycine and
DEPC-treated PBS-washed cells were scraped into ice cold RNase-free lysis buffer
(DEPC-treated water containing 50 mM Hepes pH 7.5, 150 mM NaCl, 10% gly-
cerol, 0.5% Triton X-100, 1 mM EDTA, 1 mM DTT, 1 ml RNase inhibitor, protease
inhibitors). Cells were passed through a 21G gauge needle 10 times and left to lyse
on ice for 10 min, followed by centrifugation at 17,000 g at 4 �C for five minutes and
quantification using Bradford Reagent. 2.5 mg of total protein at a 1 mg ml� 1

was incubated with 40 ml anti-FLAGM2 affinity resin (which had been blocked
overnight with 1% BSA and 5 ml ml� 1 ssDNA) overnight at 4 �C on a rotating
wheel. Beads were washed 5 times with RNase-free lysis buffer. Complexes were
reverse cross-linked and eluted from the resin in EZ RNA extraction denaturing
buffer (Geneflow) for 1 h at 70 �C, re-suspending the resin every 10 min. The
formaldehyde crosslinks were reversed by heating the samples for 1 h at 70 �C
and RNA was extracted using PureZOL (for total samples) or the EZ Total
RNA Isolation Kit (for eluted complexes) as described in the qRT–PCR section.
Extracted RNA samples were re-suspended in 25 ml RNase-free water,
DNase-treated and 10ml input or eluate RNA was converted to cDNA and used for
qPCR as described in the qRT–PCR section.

Visualization of RNA foci and colocalization studies. To visualize sense RNA
foci, RNA fluorescence in situ hybridization (FISH) was performed as described12

using a 50 TYE-563-labelled LNA (16-mer fluorescent)-incorporated DNA probe
(Exiqon, Inc.). For human post mortem spinal cord tissue, the study was approved
by the South Sheffield Research Ethics Committee and informed consent was
obtained for all samples. RNA-FISH and immunohistochemistry were performed
on formalin fixed paraffin-embedded (FFPE) tissues as in reference12. Anti-SRSF1
antibody (Cell Signaling #8241) at a dilution of 1:200. Mounted slides were
visualized using a Leica SP5 confocal microscope system and a 63/1.4 oil
immersion objective lens. The presence of RNA foci was assessed at high resolution
(848 mm2 per image, 393� 393 pixels) using 0.9 mm z-stacks through the entire
volume of the cell.

Statistical analysis of data. Either one-way or two-way ANOVA (analysis of
variance) with Tukey’s correction for multiple comparisons was used for most
experiments with the following exceptions: DPR analysis in primary neurons
used Fisher’s exact test; fly climbing ability was analysed by Kruskal-Wallis
non-parametric test with Dunn’s correction for multiple comparisons; and the
analysis of G4C2x36 transcripts in Drosophila used paired two-tailed t-test.
No randomization was used in the animal studies. Data were plotted using
GraphPad Prism 6. Significance is indicated as follows; NS: non-significant,
PZ0.05; *Po0.05; **Po0.01; ***Po0.001; ****Po0.0001. RNA foci, DPR-positive
neurons, crawling and climbing assays were analysed in a blinded manner and
several investigators carried out the analysis. Several researchers were involved in
producing qRT–PCR and western blot data.

Data availability. All data files and files produced for statistical analysis are
available on request.
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Supplementary  Figure  1  �  Engineering  SRSF1-miRNA  depletion  vectors.  (a)  Diagrams  of 
pCDNA6.2-GW/EmGFP-SRSF1  human//mouse/rat  miR1,  EmGFP-SRSF1  human  miR2  and  EmGFP-
SRSF1  chained  miR1+2.  (b)  Diagrams  of  pCDNA6.2-GW/EmGFP-SRSF1  human//mouse/rat  miR1, 
EmGFP-SRSF1  mouse  miR2 and EmGFP-SRSF1 chained miR1+2.  For  cloning,  the  pCDNA6.2-GW/
EmGFP-SRSF1 miR1 and EmGFP-SRSF1 miR2 were built separately using the BLOCK-iT Pol II miR 
RNAi Expression Vector Kit with EmGFP (see online methods). The SRSF1 pre-miR2 RNAi cassette was 
then chained by subcloning the BamHI/XhoI-cut fragment into the BglII and XhoI sites of pcDNA6.2 
GW/EmGFP-SRSF1 miR1.

pCDNA6.2-GW/EmGFP- human/mouse/rat SRSF1  miR1

miRNA1: TTCTGGGCCCATCAACTTTAA

pCDNA6.2-GW/EmGFP- human SRSF1 miR2
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Supplementary Figure 2  �  Co-cultures  of  mouse HB9:GFP motor neurons and SRSF1-RNAi 
transduced patient-derived astrocytes. (a) Lentiviral-mediated SRSF1-RNAi depletion was evaluated 
in  HEK cells  and iAstrocytes  derived from control  and C9ORF72-ALS patients.  SRSF1  transcript 
levels were quantified in transfected HEK cells and iAstrocytes transduced with increased MOI doses 
of  LV-SRSF1-RNAi.  snRNA U1  transcript  levels  were  used  for  normalization  in  three  biological 
replicate  experiments  (mean  ±  SEM;  two-way  ANOVA  with  Tukey’s  correction  for  multiple 
comparisons; N (qPCR reactions) = 6). Statistical significance of data is indicated as follows: NS: non-
significant, p≥0.05; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001. (b) High content imaging 
pictures showing how the Columbus analysis software recognizes Hb9:GFP motor neurons and the 
axons sprouting from them over SRSF1-RNAi-transduced astrocyte background. Scale bar: 50 μm. 
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Supplementary  Figure  3  �  Depletion  of  SRSF1  leads  to  cytoplasmic  reduction  and  nuclear 
accumulation of  sense  RNA foci.  Representative  images  of  sense  RNA foci  visualized  using  Cy3-
CCCCGG Fluorescence In Situ Hybridization (red) by confocal microscopy in iAstrocytes trasnduced 
with increasing doses of SRSF1-RNAi (MOI 0, 5 and 7). The nuclei were stained in blue using DAPI. 
Arrows point to RNA foci. Cells with detectable RNA foci represent approximately 15-40% of the cell 
population depending on the individual patient-derived iAstrocyte line. Quantification was performed on 
20-25 cells containing RNA foci (see Supplementary Table 1 for individual counts and Fig. 3e for bar 
chart). Scale bar: 3 μm.



Supplementary Figure 4 � Generation of RAN-dependent uninterrupted G4C2-sense and C4G2-
antisense repeat constructs. a, Agarose gels confirming both the annealing and concatemerisation of 
the  G4C2x15  oligonucleotides.  Arrows  point  to  monomeric  and  multimeric  forms  of  annealed 
oligonucleotides. b, Trimeric oligonucleotides were treated with Mung Bean nuclease for blunt cloning. 
The  8%  acrylamide  gel  shows  HindIII/XhoI  inserts  from  pcDNA3.1/RAN  constructs  containing 
uninterrupted G4C2-sense and C4G2-antisense repeats with 5' and 3' flanking regions. c, Standard curve 
generated from the acrylamide gel analysis using the Gene Tools Image software. d, Table showing 
theroretical and experimental base pair size information for HindIII/XhoI inserts. The RAN constructs 
contain at least 38 G4C2-sense or 39 C4G2-antisense uninterrupted repeats based on the experimental 
size of the inserts (see sequences below). e, Sanger sequencing using betaine was also performed in the 
5' and 3' directions using the T7 and T3 promoter sequencing primers respectively. Each sequence read 
covered the 5' or 3' flanking region and 9-16 G4C2 or C4G2 repeats prior to interruption. Sequencing 
traces are available on request. Boxes represent HindIII (AAGCTT) and XhoI (CTCGAG) cloning sites. 
The RNA transcripts generated from these constructs are highlighted in blue (flanking regions) and red 
(sense or antisense repeats). Sequences highlighted in black/underlined correspond to the 3’end of the 
promoter sequence and in black/italics  to the start  of  the terminator sequence.  Note the absence of 
initiating codons (ATG) in both sense and antisense transcripts  generated from the RAN-dependent 
DPR-expression  constructs.  Stop  codons  are  shown  in  all  frames  in  bold.  The  repeat  constructs 
expressing 15 repeats in sense or antisense orientation are identical except that they only contain 15 
repeats. Sequencing and size analysis further showed that the number of repeats remained stable over 
multiple rounds of transformation and replication in NEB® 10-beta E. coli (New England Biolabs).
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RAN-G4C2x38 sense-repeats
...CTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAA 
TTGGGGCCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGG
CCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGC
CGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTCTAGAGGGCCC
TTCGAACAAAAACTCATCTCAGAAGAGGATCTGAATATGCATACCGGTCATCATCACCATCACCATTGAGTTTAAACCCGCTGATCAGCCTCGA...
 
RAN-C4G2x39 antisense-repeats:
...CTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAA 
TTCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCG
GCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGG
CCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTCTAGAGGGCCCT
TCGAACAAAAACTCATCTCAGAAGAGGATCTGAATATGCATACCGGTCATCATCACCATCACCATTGAGTTTAAACCCGCTGATCAGCCTCGA...



Expression of synthetic poly-Gly-Pro x36 DPRs independent of G4C2 repeats.

Supplementary Figure 5 � Generation of synthetic constructs expressing DPRs independently of 
RAN-translation and G4C2 repeat hexanucleotides. (a) Nucleotide sequence encoding poly-Gly-Pro 
x36 DPRs. (b) Nucleotide sequence encoding poly-Gly-Ala x36 DPRs. The DPR sequence is highligted 
in blue. The ATG start codon is highlighted in red while the TAA stop codon is highlighted in bold. A 
V5-tag is also present and highlighted in green.

Expression of synthetic poly-Gly-Ala x36 DPRs independent of G4C2 repeats.
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ATG GGC AAA CCG ATT CCG AAC CCG CTG CTG GGC CTG GAT AGC ACC CTC GAG AAT GAT CCC ACC ATG 
GGC CCT GGC CCT GGA CCA GGA CCT GGC CCC GGA CCC GGT CCA GGT CCC GGC CCA GGC CCC GGT CCC 
GGC CCT GGA CCA GGC CCA GGA CCA GGA CCA GGC CCA GGT CCC GGA CCA GGA CCC GGA CCT GGC CCA 
GGC CCT GGC CCT GGC CCT GGC CCC GGA CCA GGC CCT GGA CCC GGC CCT GGT CCC GGC CCA GGA CCC 
GGA CCA GGA CCT GGC CCT TAA

ATG GGC AAA CCG ATT CCG AAC CCG CTG CTG GGC CTG GAT AGC ACC CTC GAG AAT GAT CCC ACC ATG 
GGA GCT GGT GCT GGT GCA GGC GCT GGC GCA GGG GCA GGC GCT GGT GCT GGG GCT GGT GCC GGG GCT 
GGG GCA GGC GCA GGG GCT GGT GCC GGT GCA GGC GCA GGG GCT GGG GCT GGC GCT GGT GCC GGC GCA 
GGC GCG GGT GCC GGC GCA GGG GCT GGT GCA GGG GCC GGT GCT GGC GCG GGT GCA GGG GCC GGT GCA 
GGG GCA GGC GCA GGC GCT TAA
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Supplementary  Figure  6  �  Partial  loss  of  sbr/NXF1  restore  locomotor  deficits  in  G4C2x36 
expressing flies. Neuronal expression of G4C2x36 causes larval crawling (a) and adult climbing (b) 
deficits that are both restored by sbr depletion (mean ± 95% CI normalized to Control; Kruskal-Wallis 
non-parametric test with Dunn’s correction for multiple comparisons; N (larvae) = 10; N (adults) = 
Control  (GAL4/luciferase-RNAi):  105,  G4C2x36  +  Ctrl-RNAi:  70,  G4C2x36  +  sbr-RNAi:  72). 
Statistical  significance  of  data  is  indicated  as  follows:  NS:  non-significant,  p≥0.05;  *:  p<0.05;  **: 
p<0.01; ***: p<0.001; ****: p<0.0001. 
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Supplementary Figure 7 � Depleting SRSF1 or inhibiting its sequestration and interaction with 
NXF1 alter the cytoplasmic levels of hexanucleotide repeat transcripts but not their total levels. 
(a) N2A cells co-transfected with G4C2x38 and either Ctrl or SRSF1-RNAi plasmids (left part) and 
either FLAG-tagged SRSF1 aa11-196 wild type (SRSF1) or SRSF1-m4 (right part) were subjected to 
cellular  fractionation  using  hypotonic  lysis  to  yield  cytoplasmic  fractions  (Fig.  6e).  Total  and 
cytoplasmic  G4C2-repeat  sense  transcript  levels  were  normalized  to  U1  snRNA levels  in  three 
biological replicate experiments (mean ± SEM; one-way ANOVA with Tukey’s correction for multiple 
comparisons;  N (qRT-PCR reactions)  =  6).  (b)  Drosophila  expressing  G4C2x36 and  either  control 
(Ctrl)-RNAi or SRSF1-RNAi. Whole flies were subjected to cellular fractionation using hypotonic lysis 
to yield cytoplasmic fractions (Fig.  6g).  Total cytoplasmic G4C2-repeat sense transcript levels were 
normalized to Tub84b levels in three biological replicate experiments (mean ± SEM; paired t-test; N 
(qRT-PCR reactions) = 3). Statistical significance of data is indicated as follows: NS: non-significant, 
p≥0.05; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001. 
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Supplementary Figure 8 � Transcript sequence . Boxes represent the HindIII (AAGCTT) and XhoI 
(CTCGAG) cloning sites used to clone the G4C2x38 annealed oligonucleotides (Supplementary Fig. 4). 
A synthetic construct encoding for the 3x V5 tags (sequences highlighted in orange, green and violet) 
with 3 stop codons (TAA, underlined/bold) were cloned in a second step using the NotI (GCGGCCGC) 
and XbaI (TCTAGA) sites. The RNA transcript generated from this construct is highlighted in blue 
(flanking  regions)  and  red  (38  G4C2-sense  repeats)  and  orange,  green  and  violet  (3x  V5  tags). 
Sequences  highligted in  black/underlined correspond to  the  3’end of  the  promoter  sequence and in 
black/italics to the start of the terminator sequence. Note the absence of initiating codons (ATG) in the 
transcript generated from the RAN-dependent DPR-expression construct. Sequencing and size analysis 
further showed that the number of repeats remained stable over multiple rounds of transformation and 
replication in NEB® 10-beta E. coli (New England Biolabs).

RAN-G4C2x38 sense-repeats with 3x V5 tags

...CTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGTTAAGCTTGGTACCGAGCTCGGATCCACTAGTCCAGTGTGGTGGAA 
TTGGGGCCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGG
CCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGC
CGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGCCGGGGAATTCTGCAGATATCCAGCACAGTG GCGGCCGC TG GGCAAGCCCATC 
CCCAACCCCCTGCTCGGTCTGGACAGCACCGGCTAA C GGCAAGCCCATCCCCAACCCCCTGCTCGGTCTGGACAGCACCGGCTAA C GGCAAGC
CCATCCCCAACCCCCTGCTCGGTCTGGACAGCACCGGCTAA CTCGAGTCTAGATCTAGAGGGCCCTTCGAACAAAAACTCATCTCAGAAGAGGATC
TGAATATGCATACCGGTCATCATCACCATCACCATTGAGTTTAAACCCGCTGATCAGCCT CGA...

 



Supplementary Figure 9 � iNPC-differentiation of neurons derived from patient fibroblasts. Tuj1 
immunofluorescence  microscopy  was  performed  on  neurons  differentiated  from  induced-Neural 
Progenitor Cells (iNPCs) derived from control (Ctrl-pat154) or C9ORF72-ALS (C9-ALS-pat78) patient 
fibroblasts using the red channel. DAPI was used to stain nuclei in blue. Scale bar: 50 μm. 

Ctrl-pat154 C9-ALS-pat78 

Tu
j1

 / 
D

A
P

I 



Supplementary  Figure  10  �  Evaluating  the  efficiency  of  lentiviral-mediated  SRSF1-RNAi 
depletion in iNeurons derived from control and C9ORF72-ALS patients. SRSF1 transcript levels 
were quantified in transfected HEK cells and iAstrocytes transduced with increased MOI doses of LV-
SRSF1-RNAi. snRNA U1 transcript levels were used for normalization in two comtrol (pat154, pat 155) 
or C9-ALS (pat78, pat183) cell lines in two technical replicates for each of two biological replicate 
experiments (mean ± SEM; two-way ANOVA with Tukey’s correction for  multiple comparisons;  N 
(qPCR reactions)  =  8).  Statistical  significance  of  data  is  indicated  as  follows:  NS:  non-significant, 
p≥0.05; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001. 
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Supplementary Figure 11 �  Uncropped western blot images for figures 3a and 4c. Molecular 
weight (kDa) of the pre-stained protein ladder bands are indicated on the left side of the panels. 
Antibodies used to probe the nitrocellulose membranes are indicated on the right side. Rectangles 
represent the cropped images shown in figures. &



Figure 5a 
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Supplementary Figure 12 �  Uncropped western blot  images for figure 5a.  Molecular  weight 
(kDa) of the pre-stained protein ladder bands are indicated on the left side of the panels. Antibodies 
used to probe the nitrocellulose membranes are indicated on the right side. Rectangles represent the 
cropped images shown in figures. &



Figure 5e 

Supplementary Figure 13 �  Uncropped western blot  images for figure 5e.  Molecular  weight 
(kDa) of the pre-stained protein ladder bands are indicated on the left side of the panels. Antibodies 
used to probe the nitrocellulose membranes are indicated on the right side. Rectangles represent the 
cropped images shown in figures. &
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Figure 5f 
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Supplementary Figure  14 �  Uncropped western blot  images  for figure 5f.  Molecular  weight 
(kDa) of the pre-stained protein ladder bands are indicated on the left side of the panels. Antibodies 
used to probe the nitrocellulose membranes are indicated on the right side. Rectangles represent the 
cropped images shown in figures. &



Figure 6e
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Supplementary Figure 15 �  Uncropped western blot  images for figure 6e.  Molecular  weight 
(kDa) of the pre-stained protein ladder bands are indicated on the left side of the panels. Antibodies 
used to probe the nitrocellulose membranes are indicated on the right side. Rectangles represent the 
cropped images shown in figures. &



Figure 8d
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Figure 6g
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Supplementary Figure 16 �  Uncropped western blot  images for figure 6g.  Molecular  weight 
(kDa) of the pre-stained protein ladder bands are indicated on the left side of the panels. Antibodies 
used to probe the nitrocellulose membranes are indicated on the right side. Rectangles represent the 
cropped images shown in figures. &



Number and cellular distribution of G4C2 RNA foci in iNPCs-derived astrocytes treated with increasing MOI of LV-SRSF1-RNAi  

 iAstrocytes C9ORF72-ALS Patient 78 iAstrocytes C9ORF72-ALS Patient 183 iAstrocytes C9ORF72-ALS Patient 201 
SRSF1-
RNAi MOI 0 5 7 0 5 7 0 5 7 
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Average 0.857 0.714 1.200 0.350 1.818 0.227 0.952 0.714 1.083 0.500 1.682 0.273 0.875 0.583 1.478 0.348 1.955 0.227 
S.E.M. 0.143 0.156 0.172 0.131 0.204 0.091 0.176 0.122 0.180 0.135 0.258 0.097 0.151 0.133 0.176 0.102 0.232 0.091 

Nuc = Nuclear; Cyto = Cytoplasmic 

Supplementary Table 1 � Number and cellular distribution of G4C2 RNA foci in iNPCs-derived astrocytes 
treated with increasing MOI of LV-SRSF1-RNAi 



SRSF1 (SF2/ASF) - RNAi lines: 
v27775: FlyBase ID = FBst0457117
v27776: FlyBase ID = FBst0457118
Independent insertion lines, both lines carry the following inverted repeat sequence:
ATGCCGACGA TGCGGTGAAG GCGCGCGACG GCTACGACTA CGATGGGTAT 
CGTCTGCGCG TGGAGTTCCC GCGGGGCGGT GGTCCTGGAA GCTACCGCGG 
CGGCAACCGC AATGACCGAA GCCGCGACGG TGGGGGACGG ATGGGCGGAC 
GCGGACCGCC AGCCAAGCGC TCGCAGTACC GCGTCATGGT TACTGGACTG 
CCCGCCTCCG GATCGTGGCA AGATCTCAAG GATCACATGC GCGAGGCCGG 
CGACGTCTGC TTCGCGGACA CTTACAAGGA TGGTTCCGGC GTCGTTGAGT 
TCCTGCGCCA  CGAGGACATG  AAGTACGCAA  TCAAAAAATT  GGACGACTCT  
CGCTTCCGA
 

ALYREF (Ref1) - RNAi lines:
v12301 (GD): FlyBase ID = FBst0450381 - the line carry the following inverted repeat 
sequence:
GGTCCGATAA AGAAGGCGGC AGTGCACTAC GATCGCTCCG GTCGCTCGTT 
GGGCACCGCT GACGTGATTT TCGAACGTCG CGCCGACGCC TTGAAGGCCA 
TTAAACAGTA CCATGGCGTA CCTTTGGACG GACGCCCTAT GACCATTCAG 
CTGGCCGTCT CAGACGTGGC CGTGTTGACC CGTCCCGTAG CCGCCACCGA 
TGTCAAGCGT CGCGTGGGTG GTACTGCACC AACTTCATTC AAGCGTGGTG 
GTGGCCAAGC TGGTGGCACG GCGCGTCGCG GCTTCAAACG TCCGGTCGGT 
GGCAAGCCGG CGGCAGGCGG CCAGCGACGG GAGCGCAAGG CCCCGCCCAC 
TGCTGAGGAG CTGGACGCCG  AACTGGACTC  A
 
v104471 (KK): FlyBase ID = FBst0476329 - - the line carry the following inverted repeat 
sequence:
GTCGAACTTG ATAAAGCGCA TTTCTAAATA CAATAAATAC AGCATCAAAT 
GTATTTCAGT TATCTTAACA TCCGCCGCAT TGGCAAAACT AACAATTAAT 
GGATAAATGC GCAAGTGGTT GATTGATTTG ATGTCCGATG CTTTCAAAGA 
TCTGCTCCTG GGCGCGGCGT TGTCGATGCG TTTGCATTTA TGTACCATGC 
GGGGGGTGTC CATATGGTAG GCTTAAAACT ATAGATTGGG CTGCTCTTCT 
ATTCTTGTTA GACTAATTCA GACTATTCAC TATTTAGATC TTCATGTCGT 
TGATGTATGA  GTCCAGTTCG  GCGT 
 

Supplementary Note 1 � References and sequences of insertions for the Drosophila RNAi lines &



miRNA  hairpins  were  designed  against  human  SRSF1  (NCBI  Reference  Sequence: 
NM_006924.4,  mRNA),  mouse  SRSF1  (NCBI  Reference  Sequence:  NM_173374.4, 
mRNA)  and  rat  SRSF1  (NCBI  Reference  Sequence:  NM_001109552.2,  mRNA).  The 
SRSF1 sequence targeted by miRNA hairpin 1 is identical in human, mouse and rat SRSF1. 
The blue regions highlighted in sequences below represent the mature miR RNAi sequences 
which targets the complementary sense sequences on SRSF1 (highlighted in red):
!
1/  Targeted  human,  mouse  and  rat  SRSF1  miR1  sequence 
(TTAAAGTTGATGGGCCCAGAA)  respectively  starts  at  784  nt  (NCBI  RefSeq 
NM_006924.4 - RRM2 region), 1,041 nt (NCBI RefSeq NM_173374.4 - RRM2 region) and 
699 nt (NCBI RefSeq: NM_001109552.2 - RRM2 region):
- human/mouse/rat SRSF1 - miR1 -Top strand:!
5’- TGCTGTTCTGGGCCCATCAACTTTAAGTTTTGGCCACTGACTGACTTAAAG!
TTTGGGCCCAGAA -3’!
- human/mouse/rat SRSF1 - miR1 - Bottom strand:!
5'- CCTGTTCTGGGCCCAAACTTTAAGTCAGTCAGTGGCCAAAACTTAAAGTTG!
ATGGGCCCAGAAC -3'
!
2/  Targeted  human  SRSF1 miR2 sequence  (AATGGTATGACTCCAAGTGCT)  starts  at 
1436 nt (NCBI RefSeq NM_006924.4 - 3’UTR region):!
- human SRSF1 - miR2 - Top strand:!
5'- TGCTGAGCACTTGGAGTCATACCATTGTTTTGGCCACTGACTGACAATGGT!
ATCTCCAAGTGCT -3'!
- human SRSF1 - miR2 - Bottom strand:!
5'- CCTGAGCACTTGGAGATACCATTGTCAGTCAGTGGCCAAAACAATGGTAT!
GACTCCAAGTGCTC -3'!

3/ Targeted mouse SRSF1 miR2 sequence (AATGTCTATTCTGCTCTGGTT) starts at 1,473 
nt (NCBI RefSeq NM_173374.4 - 3’UTR region):!
- mouse SRSF1 – miR2 - Top strand:!
5'- TGCTGAACCAGAGCAGAATAGACATTGTTTTGGCCACTGACTGACAATGT!
CTACTGCTCTGGTT -3'!
- mouse SRSF1 - miR2 - Bottom strand:!
5'- CCTGAACCAGAGCAGTAGACATTGTCAGTCAGTGGCCAAAACAATGTCTA!
TTCTGCTCTGGTTC -3'!

Supplementary Note 2 � Sequences of designed oligonucleotides and miRNA hairpins&



Drosophila SRSF1 (designed using Primer-BLAST)
Fwd: 5’-TACCGCGTCATGGTTACTGG-3’
Rev: 5’-GTACGCGAATGTAGGCAACC-3’

Drosophila ALYREF (designed using Primer-BLAST)
Fwd: 5’- CGATATGTACGACGGACCGAA-3’     
Rev: 5’- CGGACCAAAGTCGTTGAAGAG-3’

Drosophila Tub84b (described in reference68)
Fwd: 5’-TGGGCCCGTCTGGACCACAA-3’      
Rev: 5’-TCGCCGTCACCGGAGTCCAT-3’

Drosophila C9 3’UTR (described in reference69)
Fwd: 5’-TTCCAACCTATGGAACTGATGA-3’      
Rev: 5’-GGTTTTCCTCATTAAAGGCATTC-3’

Human SRSF1 (designed using Primer-BLAST)
Fwd: 5’-CCGCATCTACGTGGGTAACT-3’       
Rev: 5’-TCGAACTCAACGAAGGCGAA-3’

Human ALYREF (designed using Primer-BLAST)
Fwd: 5’-TCTGGTCGCAGCTTAGGAAC-3’      
Rev: 5’-CCACCTCTGTTTACGCTCTGT-3’

Human U1 snRNA (designed using Primer-BLAST)
Fwd: 5’-CCATGATCACGAAGGTGGTT-3’     
Rev: 5’-ATGCAGTCGAGTTTCCCACA-3’

Human SMN (described in reference70)
Fwd 5’-CTTGTGAAACAAAATGCTTTTTAACATCCAT-3’
Rev 5’-GAATGTGAGCACCTTCCTTCTTTTT-3’

Human JUN (designed using Primer BLAST)
Fwd 5’-GAACTGCACABCCAGAACAC-3’
Rev 5’TGGGTTGAAGTTGCTGAGG-3’

C9RAN (designed using Primer-BLAST). Primers anneal downstream of the G4C2 or 
C4G2 repeat sequences in the 3’UTR of mRNA transcribed from pcDNA3.1 constructs.
Fwd 5’-GGGCCCTTCGAACCCCCGTC-3’
Rev: 5’GGGAGGGGCAAACAACAGAT-3’

Human C9ORF72 Exon-1 Forward (designed using Primer BLAST)
5’-TCAAACAGCGACAAGTTCCG-3’

Human C9ORF72 Exon-3 Reverse (designed using Primer BLAST)
5’-GTCGACATGACTGCATTCCA-3’

Human C9ORF72 Intron-1 Reverse (designed using Primer BLAST)
5’-GGAGAGAGGGTGGGAAAAAC-3’

Supplementary Note 3 � Sequences of qPCR primers used in the study&
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