12 research outputs found

    Fracture toughness of the cancellous bone of FNF femoral heads in relation to its microarchitecture

    Get PDF
    This study considers the relationship between microarchitecture and mechanical properties for cancellous bone specimens collected from a cohort of patients who had suffered fractured necks of femur. OP is an acute skeletal condition with huge socioeconomic impact [1] and it is associated with changes in both bone quantity and quality [2], which affect greatly the strength and toughness of the tissue [3].Support was provided by the EPSRC (EP/K020196: Point-ofCare High Accuracy Fracture Risk Prediction), the UK Department of Transport under the BOSCOS (Bone Scanning for Occupant Safety) project, and approved by Gloucester and Cheltenham NHS Trust hospitals under ethical consent (BOSCOS – Mr. Curwen CI REC ref 01/179G)

    Developing focal construct technology for in vivo diagnosis of osteoporosis

    Get PDF
    Osteoporosis is a prevalent bone disease around the world, characterised by low bone mineral density and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density (BMD), using dual energy X-ray absorption (DEXA). However, the use of BMD to diagnose osteoporosis is not without limitation and arguably the risk of osteoporotic fracture should be determined collectively by bone mass, architecture and physicochemistry of the mineral composite building blocks. Rather than depending exclusively on the 'mass' of bone, our previous research investigated predicting the risk of fracture using 'bone quality'. The work highlighted that the material properties of OP tissue differ significantly to that of 'normal' bone and for the first time reported the clinical value of new biomarkers (obtained from X-ray scatter signatures) for fracture risk prediction. Thus, in order to improve fracture prediction models, diagnostic tools need to be developed which not only measure bone mineral density, but also bone quality. This pilot study builds on our previous work and aims to develop a new technology, Focal Construct Technology (FCT), which is hoped can measure XRD signatures in vivo. Our previous work was performed entirely with interrogating probes applied in transmission mode. This has some disadvantages that would be overcome were reflection mode employed. This study involves the creation of unique, high impact data with the potential to form the basis of a new generation of medical diagnostic instrumentation. A systematic series of conventional reflection mode ex vivo experiments were performed in which bone specimens were examined through increasing thicknesses of overlaying muscle/fat/skin. Further, we applied FCT to these geometries. This had not previously been attempted and required some initial modelling to ensure correct topologies of the hollow beams. The results from this study suggest it may be possible to obtain the parameters in vivo with the same precision as those obtained within the laboratory when using FCT

    Energy-dispersive X-ray diffraction using an annular beam

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing.We acknowledge gratefully the funding provided by the UK Engineering and Physical Sciences Research Council (EPSRC) grant number EP/K020196/1

    The South West Area Mesothelioma and Pemetrexed trial - A multi-centre prospective observational study evaluating novel markers of chemotherapy response and prognostication

    Get PDF
    Background:Robust markers that predict prognosis and detect early treatment response in malignant pleural mesothelioma (MPM) would enhance patient care.Methods:Consecutive patients with MPM who were considered fit for first-line chemotherapy were prospectively recruited. Patients of similar performance status opting for best supportive care were included as a comparator group. Baseline and interval CT, PET-CT and serum markers (mesothelin, fibulin-3 and neutrophil–lymphocyte ratio (NLR)) were obtained, and patients followed up for a minimum 12 months.Findings:Seventy-three patients were recruited (58 chemotherapy/15 comparator arm). Baseline TGV (total glycolytic volume on PET-CT) was an independent predictor of worse overall survival (OS) (P=0.001). Change in interval TGV(baseline/after two cycles of chemotherapy) did not predict OS or chemotherapy response on CT. Baseline NL

    The effect of chemotherapy on health-related quality of life in mesothelioma: Results from the SWAMP trial

    Get PDF
    © 2015 Cancer Research UK. All rights reserved. Background: The effect of chemotherapy on health-related quality of life (HRQoL) in malignant pleural mesothelioma (MPM) is poorly understood. Patient-individualised prognostication and prediction of treatment response from chemotherapy is useful but little evidence exists to guide practice. Method: Consecutive patients with MPM who were fit for first-line chemotherapy with pemetrexed and cisplatin\carboplatin were recruited and followed up for a minimum of 12 months. This study focussed on the HRQoL outcomes of these patients using the EQ-5D, EORTC QLQ-C30 and LC13. Results: Seventy-three patients were recruited of which 58 received chemotherapy and 15 opted for best supportive care (BSC). Compliance with HRQoL questionnaires was 98% at baseline. The chemotherapy group maintained HRQoL compared with the BSC group whose overall HRQoL fell (P=0.006) with worsening dyspnoea and pain. The impact of chemotherapy was irrespective of histological subtype although those with non-epithelioid disease had worse HRQoL at later time points (P=0.012). Additionally, those with a falling mesothelin or improvement on modified-RECIST CT at early follow-up had a better HRQoL at 16 weeks. Conclusions: HRQoL was maintained following chemotherapy compared with a self-selected BSC group. Once chemotherapy is initiated, a falling mesothelin or improved RECIST CT findings infer a quality-of-life advantage
    corecore