26 research outputs found

    No patient left behind : The promise of immune priming with epigenetic agents

    Get PDF
    Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors, and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to immunotherapy. This review presents evidence for that association, summarizes the epi-based mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind strategy critically depends on the toxicity profile of the epigenetic agent(s).Peer reviewe

    A Review of Clinical Radioprotection and Chemoprotection for Oral Mucositis.

    Get PDF
    The first tenet of medicine, primum non nocere or first, do no harm , is not always compatible with oncological interventions e.g., chemotherapy, targeted therapy and radiation, since they commonly result in significant toxicities. One of the more frequent and serious treatment-induced toxicities is mucositis and particularly oral mucositis (OM) described as inflammation, atrophy and breakdown of the mucosa or lining of the oral cavity. The sequelae of oral mucositis (OM), which include pain, odynodysphagia, dysgeusia, decreased oral intake and systemic infection, frequently require treatment delays, interruptions and discontinuations that not only negatively impact quality of life but also tumor control and survivorship. One potential strategy to reduce or prevent the development of mucositis, for which no effective therapies exist only best supportive empirical care measures, is the administration of agents referred to as radioprotectors and/or chemoprotectors, which are intended to differentially protect normal but not malignant tissue from cytotoxicity. This limited-scope review briefly summarizes the incidence, pathogenesis, symptoms and impact on patients of OM as well as the background and mechanisms of four clinical stage radioprotectors/chemoprotectors, amifostine, palifermin, GC4419 and RRx-001, with the proven or theoretical potential to minimize the development of mucositis particularly in the treatment of head and neck cancers

    Navigating the “No Man\u27s Land” of TKI-Failed EGFR-Mutated Non– Small Cell Lung Cancer (NSCLC): A Review

    Get PDF
    As the leading cause of cancer-related mortality, lung cancer is a worldwide health issue that is overwhelmingly caused by smoking. However, a substantial minority (~25%) of patients with non–small cell lung cancer (NSCLC) has never smoked. In these patients, activating mutations of the epidermal growth factor receptor (EGFR) are more likely, which render their tumors susceptible for a finite period to treatment with EGFR tyrosine kinase inhibitors (TKIs) and confer a better prognosis than EGFR wild-type NSCLC. On progression, due to the inevitable insurgence of resistance, TKIs are generally followed by second- or third-line salvage chemotherapy until treatment failure, after which no standard treatment options are available, resulting in a poor prognosis and a high risk of death. With the focus of clinical attention on treatment with TKIs, few studies on optimal salvage therapies, including cytotoxic chemotherapy, after failure of EGFR TKIs have been reported. Despite a paucity of available data, the aim of this review is to summarize the “no-man\u27s land” of TKI-failed EGFR-mutated NSCLC and expand on alternative strategies as well as potential future directions

    RRx-001 in Refractory Small-Cell Lung Carcinoma: A Case Report of a Partial Response after a Third Reintroduction of Platinum Doublets.

    Get PDF
    RRx-001 is a pan-active, systemically nontoxic epigenetic inhibitor under investigation in advanced non-small cell lung cancer, small-cell lung cancer and high-grade neuroendocrine tumors in a Phase II clinical trial entitled TRIPLE THREAT (NCT02489903), which reexposes patients to previously effective but refractory platinum doublets after treatment with RRx-001. The purpose of this case study is first to report a partial response to carboplatin and etoposide in a patient with small-cell lung cancer pretreated with RRx-001, indicating episensitization or resensitization by epigenetic mechanisms, and second to discuss the literature related to small-cell lung cancer and episensitization

    Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents

    No full text
    First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity

    Rewriting the Epigenetic Code for Tumor Resensitization: A Review

    Get PDF
    In cancer chemotherapy, one axiom, which has practically solidified into dogma, is that acquired resistance to antitumor agents or regimens, nearly inevitable in all patients with metastatic disease, remains unalterable and irreversible, rendering therapeutic rechallenge futile. However, the introduction of epigenetic therapies, including histone deacetylase inhibitors (HDACis) and DNA methyltransferase inhibitors (DNMTIs), provides oncologists, like computer programmers, with new techniques to “overwrite” the modifiable software pattern of gene expression in tumors and challenge the “one and done” treatment prescription. Taking the epigenetic code-as-software analogy a step further, if chemoresistance is the product of multiple nongenetic alterations, which develop and accumulate over time in response to treatment, then the possibility to hack or tweak the operating system and fall back on a “system restore” or “undo” feature, like the arrow icon in the Windows XP toolbar, reconfiguring the tumor to its baseline nonresistant state, holds tremendous promise for turning advanced, metastatic cancer from a fatal disease into a chronic, livable condition. This review aims 1) to explore the potential mechanisms by which a group of small molecule agents including HDACis (entinostat and vorinostat), DNMTIs (decitabine and 5-azacytidine), and redox modulators (RRx-001) may reprogram the tumor microenvironment from a refractory to a nonrefractory state, 2) highlight some recent findings, and 3) discuss whether the current “once burned forever spurned” paradigm in the treatment of metastatic disease should be revised to promote active resensitization attempts with formerly failed chemotherapies

    Assessing Ecosystem Structure and Function in the Logan River and an Urban Canal in Logan, UT

    No full text
    Urban water systems are highly managed, especially in the semi-arid, Intermountain West. Here, humans have constructed extensive conveyance systems to support agriculture, mitigate flooding, and discharge stormwater. Despite their regional prevalence, the ecological structure and functioning of these conveyance systems remains largely unknown. To address this gap, we are comparing ecosystem structure and function (i.e. leaf decomposition) between an urban canal the Logan River in Logan, Utah. We hypothesized that leaf decomposition would be slower in the canal compared to the river because of reduced shredder biomass associated with poorer water quality. We also expected water temperature and concentrations of nutrients and metals to be higher at sites further downstream in both waterways, due to the accumulation of stressors as they flow through urban areas. To test these hypotheses, we collected water quality and freshwater invertebrates samples and measured leaf decomposition at twenty sites along the Logan River and an urban canal. Our results did not support these hypotheses. The canal showed faster leaf decomposition as the canal had a significantly lower amount of ash-free dry mass remaining in coarse-mesh litter bags compared to the river. Leaf breakdown was driven by a significantly higher biomass of shredders (Hyalella sp.) in the canal compared to the Logan River. Water chemistry data of several nutrients and metals suggest that the lower reaches of the Logan River have poorer water quality than both the canal and the upstream reaches of the river. Our results suggest that man-made waterways can retain important ecological services
    corecore