55 research outputs found
Microfluidic E. coli Detection
In both developed and developing countries, there is a need for a fast diagnostic system to detect pathogens within a fluid sample. In developing a microfluidic platform, which utilizes a microfluidic chip and an optical detection method, doors may be opened for new methods of determining pathogen concentration in fluid. Most biological reactions are not instantaneous. A flow-controlling mechanism with no power requirement may be implemented in the microfluidic platform. As a proof-of-concept, our device uses a microfluidic chip, smartphone, and microlens to detect E. coli concentrations in water. The detection method is based on the latex agglutination assay which relies on visual observations and judgment to determine the presence of pathogens in the water sample. Our approach provides a quantification of the traditional latex agglutination output, and the lower detection limit (105cells/mL) is competitive with that of the traditional agglutination method. In developing such a platform, a cheap and effective detection test for people in developing countries can be available worldwide for easy determination of whether or not a fluid sample is safe for use, and with several modifications, this platform could potentially be used to detect different pathogens, simultaneously
A comparative study of the superconductivity in the Holstein and optical Su-Schrieffer-Heeger models
Theoretical studies suggest that Su-Schrieffer-Heeger-like electron-phonon
(-ph) interactions can mediate high-temperature bipolaronic
superconductivity that is robust against repulsive electron-electron
interactions. Here we present a comparative analysis of the pairing and
competing charge/bond correlations in the two-dimensional Holstein and optical
Su-Schrieffer-Heeger (SSH) models using numerically exact determinant quantum
Monte Carlo. We find that the SSH interactions support light bipolarons and
strong superconducting correlations out to relatively large values of the
-ph coupling and densities near half-filling, while the Holstein
interaction does not due to the formation of heavy bipolarons and competing
charge-density-wave order. We further find that the Holstein and SSH models
have comparable pairing correlations in the weak coupling limit for carrier
concentrations , where competing orders and polaronic
effects are absent. These results support the proposal that SSH (bi)polarons
can support superconductivity to larger values of in comparison to
the Holstein polaron, but that the resulting gains are small in
the weak coupling limit. We also find that the SSH model's pairing correlations
are suppressed after including a weak on-site Hubbard repulsion. These results
have important implications for identifying and engineering bipolaronic
superconductivity.Comment: 10 pages including appendice
The Royal College of Ophthalmologists' National Ophthalmology Database study of cataract surgery: Report 7, immediate sequential bilateral cataract surgery in the UK: Current practice and patient selection.
BACKGROUND: Cataract extraction is the most frequently performed surgical intervention in the world and demand is rising due to an ageing demography. One option to address this challenge is to offer selected patients immediate sequential bilateral cataract surgery (ISBCS). This study aims to investigate patient and operative characteristics for ISBCS and delayed bilateral cataract surgery (DSCS) in the UK. METHODS: Data were analysed from the Royal College of Ophthalmologists' National Ophthalmology Database Audit (NOD) of cataract surgery. Eligible patients were those undergoing bilateral cataract extraction from centres with a record of at least one ISBCS operation between 01/04/2010 and 31/08/2018. Variable frequency comparison was undertaken with chi-square tests. RESULTS: During the study period, 1073 patients had ISBCS and 248,341 DSCS from 73 centres. A higher proportion of ISBCS patients were unable to lie flat (11.3% vs. 1.8%; p < 0.001), unable to cooperate (9.7% vs. 2.7%; p < 0.001); underwent general anaesthesia (58.7% vs. 6.6% (p < 0.001)); had brunescent/white/mature cataracts (odds ratio (OR) 5.118); no fundal view/vitreous opacities (OR 8.381); had worse pre-operative acuity 0.60 LogMAR ISBCS vs. 0.50 (first) and 0.40 (second eye) DSCS and were younger (mean ages, 71.5 vs. 75.6 years; p < 0.001). Posterior capsular rupture (PCR) rates adjusted for case complexity were comparable (0.98% ISBCS and 0.78% DSCS). CONCLUSIONS: ISBCS was performed on younger patients, with difficulty cooperating and lying flat, worse pre-operative vision, higher rates of known PCR risk factors and more frequent use of general anaesthesia than DSCS in centres recorded on NOD
Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity
Functional cotton fibers have a wide range of applications in domestic, commercial, and military settings, and so enhancing the properties of these materials can yield substantial benefits. Herein, we report the creation of functional fibers that are self-cleaning, anti-microbial, and protective against UV radiation. A uniform, and high surface area films of TiO2 were deposited on cotton fibers and gold/silver nanoparticles were directly incorporated on the nanostructured TiO2 surface. The synthetic method is simple and the produced TiO2 film is homogenous and the nanoparticles were shown to be effectively distributed on the surface using a simple photocatalytic reduction method. The Ag/Au-TiO2 coated fibers was morphologically characterized using atomic force microscopy (AFM) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), and the self-cleaning properties of noble metal nanoparticle/TiO2 coated fibers were demonstrated by repeated staining followed by exposure to simulated solar light. The 1 mM Ag-TiO2 coated fabric was observed to have the largest improvement in rate of stain extinction compared to the untreated fibers with a methylene blue stain, and the 1 mM Au-TiO2 coated fibers were observed to have the largest improvement versus untreated fibers when stained with Congo red. The fibers maintained consistent photocatalytic activity over multiple cycles, and the resistance of the Ag/Au-TiO2 coated cotton to degradation was verified using Fourier transform infrared spectroscopy (FTIR). An efficient anti-microbial activity of the fibers was confirmed by exposure of the fibers to bacterial culture (Escherichia Coli) and direct observation of antimicrobial activity
Mechanisms controlling anaemia in Trypanosoma congolense infected mice.
Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection
Aligning the Global Delta Risk Index with SDG and SFDRR global frameworks to assess risk to socio-ecological systems in river deltas
River deltas globally are highly exposed and vulnerable to natural hazards and are often over-exploited landforms. The Global Delta Risk Index (GDRI) was developed to assess multi-hazard risk in river deltas and support decision-making in risk reduction interventions in delta regions. Disasters have significant impacts on the progress towards the Sustainable Development Goals (SDGs). However, despite the strong interlinkage between disaster risk reduction and sustainable development, global frameworks are still developed in isolation and actions to address them are delegated to different institutions. Greater alignment between frameworks would both simplify monitoring progress towards disaster risk reduction and sustainable development and increase capacity to address data gaps in relation to indicator-based assessments for both processes. This research aims at aligning the GDRI indicators with the SDGs and the Sendai Framework for Disaster and Risk Reduction (SFDRR). While the GDRI has a modular indicator library, the most relevant indicators for this research were selected through a delta-specific impact chain designed in consultation with experts, communities and stakeholders in three delta regions: the Red River and Mekong deltas in Vietnam and the Ganges–Brahmaputra–Meghna (GBM) delta in Bangladesh and India. We analyse how effectively the 143 indicators for the GDRI match (or not) the SDG and SFDRR global frameworks. We demonstrate the interconnections of the different drivers of risk to better inform risk management and in turn support delta-level interventions towards improved sustainability and resilience of these Asian mega-deltas
Proteomic Profile of Reversible Protein Oxidation Using PROP, Purification of Reversibly Oxidized Proteins
Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO), KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3), the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells
Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?
Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35-40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species
Impact of Environmental Parameters on Marathon Running Performance
PURPOSE: The objectives of this study were to describe the distribution of all runners' performances in the largest marathons worldwide and to determine which environmental parameters have the maximal impact. METHODS: We analysed the results of six European (Paris, London, Berlin) and American (Boston, Chicago, New York) marathon races from 2001 to 2010 through 1,791,972 participants' performances (all finishers per year and race). Four environmental factors were gathered for each of the 60 races: temperature (°C), humidity (%), dew point (°C), and the atmospheric pressure at sea level (hPA); as well as the concentrations of four atmospheric pollutants: NO(2)-SO(2)-O(3) and PM(10) (μg x m(-3)). RESULTS: All performances per year and race are normally distributed with distribution parameters (mean and standard deviation) that differ according to environmental factors. Air temperature and performance are significantly correlated through a quadratic model. The optimal temperatures for maximal mean speed of all runners vary depending on the performance level. When temperature increases above these optima, running speed decreases and withdrawal rates increase. Ozone also impacts performance but its effect might be linked to temperature. The other environmental parameters do not have any significant impact. CONCLUSIONS: The large amount of data analyzed and the model developed in this study highlight the major influence of air temperature above all other climatic parameter on human running capacity and adaptation to race conditions
- …