3 research outputs found

    Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution

    Get PDF
    Soil phosphorus (P) availability and its distribution influence plant growth and productivity, but how they affect the growth dynamics and sex-specific P acquisition strategies of dioecious plant species is poorly understood. In this study, the impact of soil P availability and its distribution on dioecious Populus cathayana was characterized. P. cathayana males and females were grown under three levels of P supply, and with homogeneous or heterogeneous P distribution. Females had a greater total root length, specific root length (SRL), biomass and foliar P concentration under high P supply. Under P deficiency, males had a smaller root system than females but a greater exudation of soil acid phosphatase, and a higher colonization rate and arbuscular mycorrhizal hyphal biomass, suggesting a better capacity to mine P and a stronger association with arbuscular mycorrhizal fungi to forage P. Heterogeneous P distribution enhanced growth and root length density (RLD) in females. Female root proliferation in P-rich patches was related to increased foliar P assimilation. Localized P application for increasing P availability did not enhance the biomass accumulation and the morphological plasticity of roots in males, but it raised hyphal biomass. The findings herein indicate that sex-specific strategies in P acquisition relate to root morphology, root exudation and mycorrhizal symbioses, and they may contribute to sex-specific resource utilization patterns and niche segregation.Peer reviewe

    Ultrafine nano-TiO2 loaded on dendritic porous silica nanoparticles for robust transparent antifogging self-cleaning nanocoatings

    No full text
    Multifunctional nanocoatings with mechanical robustness, high transparence, antifogging and self-cleaning have attracted significant attention because of their wide applications in glass-related fields. However, it is still very difficult to construct this kind of multifunctional nanocoatings due to the requirement of their comprehensive structure parameters. In this work, we successfully fabricated robust transparent antifogging self-cleaning nanocoatings by employing dendritic porous silica nanoparticles (DPSNs) evenly loaded with 2-3 nm of small TiO2 nanoparticles (NPs) as a building block. A series of DPSNs@X% TiO2 nanocomposites with tunable weight ratios (X%) of TiO2/DPSNs from 10% to 60% were firstly prepared by controlling the growth of TiO2 on the heterogeneous interface of center-radial large pores of DPSNs, followed by calcination. Noteworthily, DPSNs@10% TiO2 exhibited highest photocatalytic and antibacterial performance mainly due to uniform distribution of TiO2 NPs, their small sizes of 2-3 nm and center-radial pore. Therefore, DPSNs@10% TiO2 was chosen as an optimized building block and combined with acid-catalyzed silica sol (ACSS) to develop an excellent suspension for multifunctional nanocoatings. The obtained glass slide with the optimal nanocoating showed photocatalytic selfcleaning behavior, high transparence, hydrophilic (WCA = 6.2 degrees) antifogging, and high mechanical robustness, which can withstand 4B tape adhesion test and 3H pencil scratching test. This work provides an important exploration for developing multifunctional nanocoatings
    corecore