50 research outputs found

    Diverse biological effects of glycosyltransferase genes from Tartary buckwheat

    Get PDF
    Background: Tartary buckwheat (Fagopyrum tataricum) is an edible cereal crop whose sprouts have been marketed and commercialized for their higher levels of anti-oxidants, including rutin and anthocyanin. UDP-glucose flavonoid glycosyltransferases (UFGTs) play an important role in the biosynthesis of flavonoids in plants. So far, few studies are available on UFGT genes that may play a role in tartary buckwheat flavonoids biosynthesis. Here, we report on the identification and functional characterization of seven UFGTs from tartary buckwheat that are potentially involved in flavonoid biosynthesis (and have varying effects on plant growth and development when overexpressed in Arabidopsis thaliana.) Results: Phylogenetic analysis indicated that the potential function of the seven FtUFGT proteins, FtUFGT6, FtUFGT7, FtUFGT8, FtUFGT9, FtUFGT15, FtUFGT40, and FtUFGT41, could be divided into three Arabidopsis thaliana functional subgroups that are involved in flavonoid biosynthesis of and anthocyanin accumulation. A significant positive correlation between FtUFGT8 and FtUFGT15 expression and anthocyanin accumulation capacity was observed in the tartary buckwheat seedlings after cold stress. Overexpression in Arabidopsis thaliana showed that FtUFGT8, FtUFGT15, and FtUFGT41 significantly increased the anthocyanin content in transgenic plants. Unexpectedly, overexpression of FtUFGT6, while not leading to enhanced anthocyanin accumulation, significantly enhanced the growth yield of transgenic plants. When wild-type plants have only cotyledons, most of the transgenic plants of FtUFGT6 had grown true leaves. Moreover, the growth speed of the oxFtUFGT6 transgenic plant root was also significantly faster than that of the wild type. At later growth, FtUFGT6 transgenic plants showed larger leaves, earlier twitching times and more tillers than wild type, whereas FtUFGT15 showed opposite results. Conclusions: Seven FtUFGTs were isolated from tartary buckwheat. FtUFGT8, FtUFGT15, and FtUFGT41 can significantly increase the accumulation of total anthocyanins in transgenic plants. Furthermore, overexpression of FtUFGT6 increased the overall yield of Arabidopsis transgenic plants at all growth stages. However, FtUFGT15 shows the opposite trend at later growth stage and delays the growth speed of plants. These results suggested that the biological function of FtUFGT genes in tartary buckwheat is diverse

    Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway

    No full text
    AbstractObjectives: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus. This study investigated the mechanism of triptolide (TP) in podocyte injury in DN.Methods: DN mouse models were established by feeding with a high-fat diet and injecting with streptozocin and MPC5 podocyte injury models were induced by high-glucose (HG), followed by TP treatment. Fasting blood glucose and renal function indicators, such as 24 h urine albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and kidney/body weight ratio of mice were examined. H&E and TUNEL staining were performed for evaluating pathological changes and apoptosis in renal tissue. The podocyte markers, reactive oxygen species (ROS), oxidative stress (OS), serum inflammatory cytokines, nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-related proteins, and pyroptosis were detected by Western blotting and corresponding kits. MPC5 cell viability and pyroptosis were evaluated by MTT and Hoechst 33342/PI double-fluorescence staining. Nrf2 inhibitor ML385 was used to verify the regulation of TP on Nrf2.Results: TP improved renal function and histopathological injury of DN mice, alleviated podocytes injury, reduced OS and ROS by activating the Nrf2/heme oxygenase-1 (HO-1) pathway, and weakened pyroptosis by inhibiting the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome pathway. In vitro experiments further verified the inhibition of TP on OS and pyroptosis by mediating the Nrf2/HO-1 and NLRP3 inflammasome pathways. Inhibition of Nrf2 reversed the protective effect of TP on MPC5 cells.Conclusions: Overall, TP alleviated podocyte injury in DN by inhibiting OS and pyroptosis via Nrf2/ROS/NLRP3 axis

    Trajectories of early to mid-life adulthood BMI and incident diabetes: the China Health and Nutrition Survey

    No full text
    IntroductionThis longitudinal study aims to characterize distinct body mass index (BMI) trajectories during early to mid-life adulthood and to explore the association between BMI change from young adulthood to midlife and incident diabetes.Research design and methodsThis study included 7289 adults who had repeatedly measured BMI 3–9 times during 1989–2011 and information on incident diabetes. Latent class growth mixed model (LCGMM) was used to identify different BMI trajectories. Cox proportional hazard models were used to investigate the association between the trajectory group membership and incident hyperglycemia, adjusting for covariates. The hyperglycemia group included individuals with prediabetes or diabetes. The model-estimated BMI levels and slopes were calculated at each age point in 1-year intervals according to the model parameters and their first derivatives, respectively. Logistic regression analyses were used to examine the association of model-estimated levels and slopes of BMI at each age point with incident hyperglycemia. The area under the curve (AUC) was computed from longitudinal growth curve models during the follow-up for each individual. Prior to the logistic regression analyses, quartiles of total, baseline, and incremental AUC values were calculated.ResultsThree distinct trajectories were characterized by LCGMM, comprising of low-increasing group (n=5136), medium-increasing group (n=1914), and high-increasing group (n=239). Compared with the low-increasing group, adjusted HRs and 95% CIs were 1.21 (0.99 to 1.48) and 1.56 (1.06 to 2.30) for the medium-increasing and the high-increasing group, respectively. The adjusted standardized ORs of model-estimated BMI levels increased among 20–50 years, ranging from 0.98 (0.87 to 1.10) to 1.19 (1.08 to 1.32). The standardized ORs of level-adjusted linear slopes increased gradually from 1.30 (1.16 to 1.45) to 1.42 (1.21 to 1.67) during 20–29 years, then decreased from 1.41 (1.20 to 1.66) to 1.20 (1.08 to 1.33) during 30–43 years, and finally increased to 1.20 (1.04 to 1.38) until 50 years. The fourth quartile of incremental AUC (OR=1.31, 95% CI 1.03 to 1.66) was significant compared with the first quartile, after adjustment for covariates.ConclusionsThese findings indicate that the BMI trajectories during early adulthood were significantly associated with later-life diabetes. Young adulthood is a crucial period for the development of diabetes, which has implications for early prevention

    Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses

    No full text
    Swarm is a European Space Agency (ESA) project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD) reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs) released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD) of 10−2 mm/s in radial (R), along-track (T) and cross-track (N) directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD). During high ionospheric activity, the mean Root Mean Square (RMS) of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR) validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery

    MGF E peptide pretreatment improves collagen synthesis and cell proliferation of injured human ACL fibroblasts via MEK-ERK1/2 signaling pathway

    No full text
    <p>Injured anterior cruciate ligament (ACL) is hard to heal due to the poor proliferative potential of ACL fibroblasts. To verify whether mechano-growth factor (MGF) E peptide can restore the cell proliferation of injured ACL fibroblasts, ACL fibroblasts pretreated with MGF E peptide were subjected to injurious stretch and the outcomes were evaluated at 0 and 24 h. After injured, the type III collagen synthesis was increased at 0 h while inhibited at 24 h. The matrix metalloproteinase-2 (MMP-2) activity/expression was up-regulated, but the cell proliferation was inhibited. Fortunately, exogenous MGF E peptide decreased the type I/III collagen synthesis at 0 h but improved the type III collagen synthesis at 24 h. It decreased the MMP-2 activity/expression of injured ACL fibroblasts. Besides, MGF E peptide accelerated the cell proliferation <i>via</i> MEK-ERK1/2 signaling pathway. Our results implied that MGF E peptide pretreatment could provide a new efficient approach for ACL regeneration.</p

    Injury study of the 6-year-old pediatric thorax and abdomen in frontal sled tests using different computational models

    Get PDF
    The correct use of Child Restraint System (CRS) is an internationally recognized effective measure to protect the safety of child occupants, which can reduce the probability of children's road traffic accident death by 54%-80%. Finite element (FE) study is one of the important methods to study the safety protection of child occupants. This study was aimed to study of 6-year-old (6YO) pediatric thorax and abdomen injuries with different computational models in frontal sled test and the protective effect of CRS on children's occupants. In this study, the verified FE model of 6YO child occupant was placed on the FE model of CRS with a three-point safety belt. In the simulation setup phase, the frontal sled simulation of the 6YO FE model was reconstructed by loading the AAMA pulse. Based on the simulation data of the Q6 dummy FE model and the 6YO child Virthuman model (V6), the frontal sled test simulation of a verified 6YO child FE model with detailed anatomical structure was carried out to pediatric thorax and abdomen injuries under the same experimental conditions in this paper. According to simulation results, the change trends of the injury indexes such as chest acceleration and compression are in good consistency with each other, which can provide effective data for the design of CRS. In addition, the simulation result of the 6YO child FE model with detailed anatomical structure can provide a variety of experimental data, such as the maximum first principal strain value and cloud chart, etc. of the internal organs of the chest and abdomen, providing theoretical basis for the performance analysis and later development of CRS

    Tartary Buckwheat Transcription Factor FtbZIP5, Regulated by FtSnRK2.6, Can Improve Salt/Drought Resistance in Transgenic Arabidopsis

    No full text
    bZIP transcription factors have been reported to be involved in many different biological processes in plants. The ABA (abscisic acid)-dependent AREB/ABF-SnRK2 pathway has been shown to play a key role in the response to osmotic stress in model plants. In this study, a novel bZIP gene, FtbZIP5, was isolated from tartary buckwheat, and its role in the response to drought and salt stress was characterized by transgenic Arabidopsis. We found that FtbZIP5 has transcriptional activation activity, which is located in the nucleus and specifically binds to ABRE elements. It can be induced by exposure to PEG6000, salt and ABA in tartary buckwheat. The ectopic expression of FtbZIP5 reduced the sensitivity of transgenic plants to drought and high salt levels and reduced the oxidative damage in plants by regulating the antioxidant system at a physiological level. In addition, we found that, under drought and salt stress, the expression levels of several ABA-dependent stress response genes (RD29A, RD29B, RAB18, RD26, RD20 and COR15) in the transgenic plants increased significantly compared with their expression levels in the wild type plants. Ectopic expression of FtbZIP5 in Arabidopsis can partially complement the function of the ABA-insensitive mutant abi5-1 (abscisic acid-insensitive 5-1). Moreover, we screened FtSnRK2.6, which might phosphorylate FtbZIP5, in a yeast two-hybrid experiment. Taken together, these results suggest that FtbZIP5, as a positive regulator, mediates plant tolerance to salt and drought through ABA-dependent signaling pathways
    corecore