227 research outputs found

    DNA content of a functioning chicken kinetochore

    Get PDF
    © The Author(s) 2014. In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments. Thus, during kinetochore assembly, CENP-A chromatin is compacted into the inner kinetochore plate without including significant amounts of flanking pericentromeric heterochromatin. © 2014 The Author(s).Wellcome Trust [grant number 073915]; Wellcome Trust Centre for Cell Biology (core grant numbers 077707 and 092076); Darwin Trust of Edinburg

    Observation of thickness dependence of magnetic surface anisotropy in ultrathin amorphous films.

    Get PDF
    Copyright © 1990 The American Physical SocietyFerromagnetic resonance (FMR) and SQUID magnetometry measurements have been made on multilayers of amorphous Fe70B30/Ag. The dependence of the magnetic surface anisotropy constant Ks on the magnetic layer thickness 2L has been determined in the range 1.6 Å16.5 Å, but decreases monotonically towards zero as 2L decreases from 16.5 Å towards zero. The FMR results can be well described by a theory developed for ultrathin amorphous ferromagnetic layers

    On Internal Re-keying

    Get PDF
    In this paper we introduce a classification of existing re-keying-based approaches to increase the security of block cipher operation modes. We introduce the concepts of external and internal re-keying putting the focus on the second one. Whereas the external re-keying approach is widely used and provides the mechanism of key usage control on a message stream processing level, the internal re-keying approach is the first known mechanism providing such a control on a single message processing level. These approaches can be applied completely independently. The internal re-keying approach was already applied to the CTR encryption mode and yielded the CTR-ACPKM mode. This mode is currently being standardized in ISO and in IETF/IRTF (CFRG). In the current paper we apply the internal re-keying approach to the well-known GCM authenticated encryption mode. The main results of this paper are a new internally re-keyed GCM-ACPKM mode and its security bounds. The proposed mode is also passing through the last formal standardization stages in IETF (CFRG). We estimate the security of the GCM-ACPKM mode respecting standard security notions. We compare both security and performance of the GCM-ACPKM and GCM modes. The results show that changing GCM mode by integrating the ACPKM internal re-keying procedure increases security, significantly extending the lifetime of a key with a negligible loss in performance. Also we show how the re-keying approaches could increase the security of TLS 1.3 cipher suites

    Large-scale collaboration in ENIGMA-EEG: A perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity

    Get PDF
    BACKGROUND AND PURPOSE: The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. METHODS: We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. RESULTS: We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. CONCLUSION: The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability

    The genetic basis of major depression

    Get PDF
    Major depressive disorder (MDD) is a common, debilitating, phenotypically heterogeneous disorder with heritability ranges from 30% to 50%. Compared to other psychiatric disorders, its high prevalence, moderate heritability, and strong polygenicity have posed major challenges for gene-mapping in MDD. Studies of common genetic variation in MDD, driven by large international collaborations such as the Psychiatric Genomics Consortium, have confirmed the highly polygenic nature of the disorder and implicated over 100 genetic risk loci to date. Rare copy number variants associated with MDD risk were also recently identified. The goal of this review is to present a broad picture of our current understanding of the epidemiology, genetic epidemiology, molecular genetics, and gene–environment interplay in MDD. Insights into the impact of genetic factors on the aetiology of this complex disorder hold great promise for improving clinical care

    Large‐scale collaboration in ENIGMA‐EEG: A perspective on the meta‐analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity.

    Get PDF
    Background and purpose The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. Methods We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. Results We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. Conclusion The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability

    Словотвір авторських неологізмів у збірці П. Маха "Плеса"

    Get PDF
    Статья посвящена словообразованию авторських неологизмов, изспользованых в зборнике стихов П. Маха "Озеро". В ней описываются способы словообразования использованых автором неологизмов. Анализируется их речевое распространение.Стаття присвячена словотвору авторських неологізмів, використаних у збірці П. Маха "Плеса". В ній описуються способи словотвору вжитих автором неологізмів. Аналізується їх мовна поширеність.The article is devoted to the word-building of innovations in the creation "Lake" by P. Mach. Word-building of innovations are described in this article. Its language distributions are analised

    Genome-wide association analyses of symptom severity among clozapine-treated patients with schizophrenia spectrum disorders

    Get PDF
    Clozapine is the most effective antipsychotic for patients with treatment-resistant schizophrenia. However, response is highly variable and possible genetic underpinnings of this variability remain unknown. Here, we performed polygenic risk score (PRS) analyses to estimate the amount of variance in symptom severity among clozapine-treated patients explained by PRSs (R2) and examined the association between symptom severity and genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activity. Genome-wide association (GWA) analyses were performed to explore loci associated with symptom severity. A multicenter cohort of 804 patients (after quality control N = 684) with schizophrenia spectrum disorder treated with clozapine were cross-sectionally assessed using the Positive and Negative Syndrome Scale and/or the Clinical Global Impression-Severity (CGI-S) scale. GWA and PRS regression analyses were conducted. Genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activities were calculated. Schizophrenia-PRS was most significantly and positively associated with low symptom severity (p = 1.03 × 10−3; R2 = 1.85). Cross-disorder-PRS was also positively associated with lower CGI-S score (p = 0.01; R2 = 0.81). Compared to the lowest tertile, patients in the highest schizophrenia-PRS tertile had 1.94 times (p = 6.84×10−4) increased probability of low symptom severity. Higher genotype-predicted CYP2C19 enzyme activity was independently associated with lower symptom severity (p = 8.44×10−3). While no locus surpassed the genome-wide significance threshold, rs1923778 within NFIB showed a suggestive association (p = 3.78×10−7) with symptom severity. We show that high schizophrenia-PRS and genotype-predicted CYP2C19 enzyme activity are independently associated with lower symptom severity among individuals treated with clozapine. Our findings open avenues for future pharmacogenomic projects investigating the potential of PRS and genotype-predicted CYP-activity in schizophrenia
    corecore