14 research outputs found
Disentangled Generation and Aggregation for Robust Radiance Fields
The utilization of the triplane-based radiance fields has gained attention in recent years due to its ability to effectively disentangle 3D scenes with a high-quality representation and low computation cost. A key requirement of this method is the precise input of camera poses. However, due to the local update property of the triplane, a similar joint estimation as previous joint pose-NeRF optimization works easily results in local minima. To this end, we propose the Disentangled Triplane Generation module to introduce global feature context and smoothness into triplane learning, which mitigates errors caused by local updating. Then, we propose the Disentangled Plane Aggregation to mitigate the entanglement caused by the common triplane feature aggregation during camera pose updating. In addition, we introduce a two-stage warm-start training strategy to reduce the implicit constraints caused by the triplane generator. Quantitative and qualitative results demonstrate that our proposed method achieves state-of-the-art performance in novel view synthesis with noisy or unknown camera poses, as well as efficient convergence of optimization. Project page: https://gaohchen.github.io/DiGARR/
Emissions of volatile organic compounds from reed diffusers in indoor environments
Reed diffusers are widely used as an indoor scenting source, in which aromatic components are thought to have sleep-improving and anxiety-relieving effects. Nevertheless, it is crucial to consider the potential health impacts associated with certain components in aromatherapy. This study aims to comprehensively explore the impact of reed diffusers on indoor air quality. We analyze the composition of gas-phase volatile organic compounds (VOCs) based on emission tests of a typical reed diffuser in a full-scale chamber. The observed top three VOCs are linalool acetate, linalool, and α-pinene, with linalool acetate accounting for 31.4%–43.6% of the total at 25°C. A physics-based model is then developed to characterize VOC emissions from a reed diffuser, and the key transport parameters are determined. Independent experiments validate the reliability of model parameters. Computational fluid dynamics simulations further demonstrate that reed diffuser position significantly impacts VOC distribution, which is essential for sophisticated exposure assessment
Protein expression profiling identifies a prognostic model for ovarian cancer
Abstract Background Owing to the high morbidity and mortality, ovarian cancer has seriously endangered female health. Development of reliable models can facilitate prognosis monitoring and help relieve the distress. Methods Using the data archived in the TCPA and TCGA databases, proteins having significant survival effects on ovarian cancer patients were screened by univariate Cox regression analysis. Patients with complete information concerning protein expression, survival, and clinical variables were included. A risk model was then constructed by performing multiple Cox regression analysis. After validation, the predictive power of the risk model was assessed. The prognostic effect and the biological function of the model were evaluated using co-expression analysis and enrichment analysis. Results 394 patients were included in model construction and validation. Using univariate Cox regression analysis, we identified a total of 20 proteins associated with overall survival of ovarian cancer patients (p < 0.01). Based on multiple Cox regression analysis, six proteins (GSK3α/β, HSP70, MEK1, MTOR, BAD, and NDRG1) were used for model construction. Patients in the high-risk group had unfavorable overall survival (p < 0.001) and poor disease-specific survival (p = 0.001). All these six proteins also had survival prognostic effects. Multiple Cox regression analysis demonstrated the risk model as an independent prognostic factor (p < 0.001). In receiver operating characteristic curve analysis, the risk model displayed higher predictive power than age, tumor grade, and tumor stage, with an area under the curve value of 0.789. Analysis of co-expressed proteins and differentially expressed genes based on the risk model further revealed its prognostic implication. Conclusions The risk model composed of GSK3α/β, HSP70, MEK1, MTOR, BAD, and NDRG1 could predict survival prognosis of ovarian cancer patients efficiently and help disease management
Weighted Gene Co-expression Network Analysis Identifies FKBP11 as a Key Regulator in Acute Aortic Dissection through a NF-kB Dependent Pathway
Acute aortic dissection (AAD) is a life-threatening disease. Despite the higher risk of mortality, currently there are no effective therapies that can ameliorate AAD development or progression. Identification of meaningful clusters of co-expressed genes or representative biomarkers for AAD may help to identify new pathomechanisms and foster development of new therapies. To this end, we performed a weighted gene co-expression network analysis (WGCNA) and calculated module-trait correlations based on a public microarray dataset (GSE 52093) and discovered 9 modules were found to be related to AAD. The module which has the strongest positive correlation with AAD was further analyzed and the top 10 hub genes SLC20A1, GINS2, CNN1, FAM198B, MAD2L2, UBE2T, FKBP11, SLMAP, CCDC34, and GALK1 were identified. Furthermore, we validated the data by qRT-PCR in an independent sample set originated from our study center. Overall, the qRT-PCR results were consistent with the results of the microarray analysis. Intriguingly, the highest change was found for FKBP11, a protein belongs to the FKBP family of peptidyl-prolyl cis/trans isomerases, which catalyze the folding of proline-containing polypeptides. In congruent with the gene expression analysis, FKBP11 expression was induced in cultured endothelial cells by angiotensin II treatment and endothelium of the dissected aorta. More importantly we show that FKBP11 provokes inflammation in endothelial cells by interacting with NF-kB p65 subunit, resulting in pro-inflammatory cytokines production. Accordingly, siRNA mediated knockdown of FKBP11 in cultured endothelial cells suppressed angiotensin II induced monocyte transmigration through the endothelial monolayer. Based on these data, we hypothesize that pro-inflammatory cytokines elicited by FKBP11 overexpression in the endothelium under AAD condition could facilitate transendothelial migration of the circulating monocytes into the aorta, where they differentiate into active macrophages and secrete MMPs and other extracellular matrix (ECM) degrading proteins, contributing to sustained inflammation and AAD. Taken together, our data identify important role of FKBP11 which can serve as biomarker and/or therapeutic target for AAD
TLR2 regulates hair follicle cycle and regeneration via BMP signaling
The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depend on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention
Inflammation-Dependent Oxidative Stress Metabolites as a Hallmark of Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, with poor prognosis and no cure. Substantial evidence implicates inflammation and associated oxidative stress as a potential mechanism for ALS, especially in patients carrying the SOD1 mutation and, therefore, lacking anti-oxidant defense. The brain is particularly vulnerable to oxidation due to the abundance of polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), which can give rise to several oxidized metabolites. Accumulation of a DHA peroxidation product, CarboxyEthylPyrrole (CEP) is dependent on activated inflammatory cells and myeloperoxidase (MPO), and thus marks areas of inflammation-associated oxidative stress. At the same time, generation of an alternative inactive DHA peroxidation product, ethylpyrrole, does not require cell activation and MPO activity. While absent in normal brain tissues, CEP is accumulated in the central nervous system (CNS) of ALS patients, reaching particularly high levels in individuals carrying a SOD1 mutation. ALS brains are characterized by high levels of MPO and lowered anti-oxidant activity (due to the SOD1 mutation), thereby aiding CEP generation and accumulation. Due to DHA oxidation within the membranes, CEP marks cells with the highest oxidative damage. In all ALS cases CEP is present in nearly all astrocytes and microglia, however, only in individuals carrying a SOD1 mutation CEP marks \u3e90% of neurons, thereby emphasizing an importance of CEP accumulation as a potential hallmark of oxidative damage in neurodegenerative diseases
Optimal short-term outcomes in balloon pulmonary angioplasty: the minimum frequency of three sessions annually
Background: Balloon pulmonary angioplasty (BPA) is typically performed in a sequential manner. Objectives: This study aimed to determine the lowest frequency of BPA for patients who could not reach treatment goals in a short period. Design: Retrospective cohort. Methods: We retrospectively enrolled 186 BPA-treated patients diagnosed with chronic thromboembolic pulmonary hypertension. According to the accumulative number of performed BPA sessions or treated pulmonary vessels or the ratio of the number of treated pulmonary vessels/the number of baseline lesions (T/P) prior to the initial occurrence of clinical outcome or censored date, we divided patients into different groups. The principal outcome was clinical worsening. Results: After stratifying patients by the number of performed BPA sessions, most baseline parameters were comparable among groups. During follow-up, 31 (16.7%) of 186 patients experienced clinical worsening. The 6-month cumulative clinical worsening-free survival rates of ⩾2 performed sessions group were significantly higher than that of 1 performed session group. The 12-month cumulative rates of clinical worsening-free survival exhibited a declining pattern in the subsequent sequence: ⩾3, 2, and 1 performed BPA sessions, and this trend persisted when follow-up time exceeded 12 months. The 6-, 12-, and 24-month cumulative clinical worsening-free survival rates were comparable between patients with 3 and ⩾4 performed BPA sessions. Similar results were also observed when stratifying patients by the accumulative number of treated pulmonary vessels (⩽8, 9–16, ⩾17) and T/P (⩽0.789, 0.790–1.263, ⩾1.264). Conclusion: To achieve optimal short-term outcomes, patients might need to undergo ⩾2 BPA sessions or have ⩾9 pulmonary vessels treated or have T/P ⩾0.790 within 6 months, and undergo ⩾3 BPA sessions or have ⩾17 pulmonary vessels treated or have T/P ⩾1.264 within 12 months