91 research outputs found

    Interferon regulatory factor 2 binding protein 2b regulates neutrophil versus macrophage fate during zebrafish definitive myelopoiesis

    Get PDF
    International audienceInterferon regulatory factor 2 binding protein 2b regulates neutrophil versus macrophage fate during zebrafish definitive myelopoiesis

    Tree diversity depending on environmental gradients promotes biomass stability via species asynchrony in China's forest ecosystems

    Get PDF
    There is mounting evidence that biodiversity promotes ecological stability in changing environments. However, understanding diversity–stability relationships and their underlying mechanisms across large-scale tree diversity and natural environmental gradients are still controversial and largely lacking. We used thirty-nine 0.12 ha long-term permanent forest plots spanning China's various forest types to test the effects of multiple abiotic (climate, soil, age and topography) and biotic factors (taxonomic and structural diversity, functional diversity and community-mean traits, and species asynchrony) on biomass stability and its components (mean biomass and biomass variability) over time. We used multiple analytical methods to identify the best explanatory variables and complicated causal relationships for community biomass stability. Our results showed that species richness increased biomass stability by promoting species asynchrony. Structural and functional diversity had a weaker effect on biomass stability. Forest age and structural diversity increased mean biomass and biomass variability significantly and simultaneously. Communities dominated by tree species with high wood density had high biomass stability. Soil nitrogen enhanced biomass stability directly and indirectly through its effects on mean biomass. Soil nitrogen to phosphorus ratio increased biomass stability via increasing species asynchrony. Precipitation indirectly increased biomass stability by affecting tree diversity. Moreover, the direct and indirect effects of soil nutrients on biomass stability were greater than that of climate variables. Our results suggest that species asynchrony is the main mechanism proposed to explain the stabilizing effect of diversity on community biomass, supporting two mechanisms, namely, the biodiversity insurance hypothesis and complementary dynamics. Soil and climate factors also play an important role in shaping diversity–stability relationships. Our results provide a new insight into how tree diversity affects ecosystem stability across diverse community types and large-scale environmental gradients

    The role of functional uniqueness and spatial aggregation in explaining rarity in trees

    Get PDF
    Aim: Determining the drivers of species rarity is fundamental for understanding and conserving biodiversity. Rarity of a given species within its community may arise due to exclusion by other ecologically similar species. Conversely, rare species may occupy habitats that are rare in the landscape or they may be ill-suited to all available habitats. The first mechanism would lead to common and rare species occupying similar ecological space defined by functional traits. The second mechanism would result in common and rare species occupying dissimilar ecological space and spatial aggregation of rare species, either because they are specialists in rare habitats or because rare species tend to be dispersal limited. Here, we quantified the contribution of locally rare species to community functional richness and the spatial aggregation of species across tree communities world-wide to address these hypotheses. Location: Asia and the Americas. Time period: 2002 to 2012 (period that considers the censuses for the plots used). Major taxa studied: Angiosperm and Gymnosperm trees. Methods: We compiled a dataset of functional traits from all the species present in eight tree plots around the world to evaluate the contribution of locally rare species to tree community functional richness using multi- and univariate approaches. We also quantified the spatial aggregation of individuals within species at several spatial scales as it relates to abundance. Results: Locally rare tree species in temperate and tropical forests tended to be functionally unique and are consistently spatially clustered. Furthermore, there is no evidence that this pattern is driven by pioneer species being locally rare. Main conclusions: This evidence shows that locally rare tree species disproportionately contribute to community functional richness, and we can therefore reject the hypothesis that locally rare species are suppressed by ecologically similar, but numerically dominant, species. Rather, locally rare species are likely to be specialists on spatially rare habitats or they may be ill-suited to the locally available environments

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Space advanced technology demonstration satellite

    Get PDF
    The Space Advanced Technology demonstration satellite (SATech-01), a mission for low-cost space science and new technology experiments, organized by Chinese Academy of Sciences (CAS), was successfully launched into a Sun-synchronous orbit at an altitude of similar to 500 km on July 27, 2022, from the Jiuquan Satellite Launch Centre. Serving as an experimental platform for space science exploration and the demonstration of advanced common technologies in orbit, SATech-01 is equipped with 16 experimental payloads, including the solar upper transition region imager (SUTRI), the lobster eye imager for astronomy (LEIA), the high energy burst searcher (HEBS), and a High Precision Magnetic Field Measurement System based on a CPT Magnetometer (CPT). It also incorporates an imager with freeform optics, an integrated thermal imaging sensor, and a multi-functional integrated imager, etc. This paper provides an overview of SATech-01, including a technical description of the satellite and its scientific payloads, along with their on-orbit performance

    Two ultraviolet radiation datasets that cover China

    Get PDF
    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes

    Comparative Study on Farmland Circulation between Plains and Mountainous Areas in an Arid Region: A Case Study of Zhangye City in Northwest China

    No full text
    Farmland circulation is essential for agricultural scale management. Due to rapid urbanization and industrialization, a large number of rural laborers have migrated to cities, resulting in accelerated farmland circulation. Revealing the farmland circulation in different geographical environments is conducive to efficient farmland management but remain largely unknown. To this end, based on the questionnaire survey data and statistical data of Zhangye City, we compared the features of farmland circulation between plains and mountainous areas, and used the binary logistic regression model and other methods to analyze the main factors affecting differentiated farmland circulation at the plot level. The main circulation modes and proportions in the plains were leasing (54.4%), exchange (22.4%), and subcontracting (16.2%), while the single leasing mode in mountainous areas accounted for 89.5%. The scale management units of more than 33.33 ha accounted for 6.48% and 30.72% in plains and mountainous areas, respectively. The proportion of circulation periods exceeding 5 years were 28.13% and 2.23% in plains and mountainous areas, respectively. The factor of “degree of farmland fragmentation” positively affected (p < 0.01) the farmland circulation in plains areas but negatively affected (p < 0.01) that in mountainous areas. The “farmland circulation price” promoted (p < 0.01) farmland circulation in both plains and mountainous areas. Whereas the “actual water diversion” (p < 0.01) and “river source water” (p < 0.05) only had varying degrees of negative impacts on farmland circulation in plains areas. Decision makers should practice management measures such as regulating farmland circulation behavior, formulating reasonable farmland circulation pricing models, and integrating farmland to promote the circulation and efficient use of farmland
    corecore