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Abstract:  47 

Aim: 48 

Determining the drivers of species rarity is fundamental for our understanding and con-49 

servation of biodiversity. The rarity of a given species within its community may arise 50 

due to exclusion by other ecologically similar species. Conversely, rare species may oc-51 

cupy habitats that are rare on the landscape or they may be ill-suited to all available habi-52 

tats. The first mechanism would lead to common and rare species occupying similar eco-53 

logical space defined by functional traits. The second mechanism would result in com-54 

mon and rare species occupying dissimilar ecological space and spatial aggregation of 55 

rare species either because they are specialist in rare habitats, or because of rare species 56 

tend to be dispersal limited. Here, we quantified the contribution of locally rare species to 57 

community functional richness, and the spatial aggregation of species across tree com-58 

munities worldwide to address these hypotheses. 59 

 60 

Location: 61 

Asia and the Americas. 62 

 63 

Methods:  64 

We compiled a dataset of functional traits from all the species present in 8 tree plots 65 

around the world to evaluate the contribution of locally rare species to tree community 66 

functional diversity using multi- and uni-variate approaches. We also quantified the spa-67 

tial aggregation of individuals within species at several spatial scales as it relates to abun-68 

dance. 69 
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 70 

Results: 71 

Locally rare tree species in temperate and tropical forests tended to be functionally 72 

unique and are consistently spatially clustered. Furthermore, there is no evidence that this 73 

pattern is driven by pioneer species being locally rare.  74 

 75 

Main conclusions: 76 

This evidence shows that locally rare tree species disproportionally contribute to commu-77 

nity functional diversity and we therefore can reject the hypothesis that locally rare spe-78 

cies are suppressed by ecologically similar, but numerically dominant, species. Rather, 79 

locally rare species are likely specialists on spatially rare habitats or they may be ill-80 

suited to the locally available environments. 81 
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82 Introduction 

83 Virtually every natural community is comprised of a few common species and many rare 

84 species (Wallace, 1878; Preston, 1948; Hubbell & Foster, 1986; Brown, 1995; Lawton & 

85 Lawton, 1999). The large number of rare species in ecological communities becomes 

86 even more pronounced in tropical regions where community ecology effectively becomes 

87 a study of rare species (Hubbell & Foster, 1986; Pitman et al., 1999; Ricklefs, 2000). 88 

Thus, our understanding of how ecological communities are themselves structured de6 82 

pends on our ability to uncover the processes driving rarity. Further, identifying the driv6 29 

ers of rarity is of fundamental importance for society’s efforts to conserve biodiversity 91 

through space and time. 

In tree communities, the rarity of species can be explained by a few, potentially 92 

93 overlapping, processes. First, a species may be locally rare because its niche is being oc6 

24 cupied by ecologically similar species that are more numerically dominant in the com6 

25 munity. For example, priority effects could promote the rarity of late arriving species 

96 even though these late arrivals are ecologically similar to the early arriving individuals 

97 (Chase, 2007). Second, a species may be a habitat specialist and the habitat it specializes 

98 on is itself rare in the landscape (MacArthur, 1957; Macarthur & Macarthur, 1961; 

99 Sugihara, 1980; Kunin & Gaston, 1997). A prediction arising from the first possibility is 

that rare species should be functionally similar to common species. The second hypothe-100 

sis, however, predicts that rare species should be functionally dissimilar to common spe-101 

cies because they specialize on different and rarer habitats than common species. Further, 102 

rare species may be spatially clustered on a preferred habitat that is itself aggregated 103 

(Kunin & Gaston, 1997). Given that in undisturbed forests pioneer species, specializing 104 
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on light gap environments, may be rare in the community (Hubbell & Foster, 1986; 105 

Denslow, 1987), a possibility that emerges is that rare species will be functionally dissim-106 

ilar from common species. For example, pioneer species are characterized by having low 107 

wood density, high specific leaf area, high leaf nutrients (Bazzaz, 1980) and are often 108 

clumped distributed in gaps (Seidler & Plotkin, 2006).  109 

Despite the great interest in rarity in ecology (Rabinowitz, 1981; Rabinowitz et 110 

al., 1986; Gaston, 1994; McGill, 2006), quantitative tests of the hypotheses described 111 

above are lacking. Specifically, comparative quantitative tests of the contribution of rare 112 

versus common species to community functional diversity and whether rare species tend 113 

to be spatially aggregated on spatially rare habitats are needed.  114 

In this study, we analyzed long-term forest plot data from the temperate zone to 115 

11- the tropics. Four of the plots are located in Asia and four are located in the Americas. In 

117 each forest plot, we quantified several plant functional traits that are associated with spe-  

118 cies performance, functional trade-offs and ecological strategies. Our approach is a trait-  

119 based extension of a method recently proposed by Mi et  al. (2012) that integrates relative 

120 abundance distributions with phylogenetic diversity measures (Figure 1). The specific 

121 questions we addressed in this study are: (1) do locally rare tree species contribute more 

122 than expected to community functional diversity by virtue of their being on the periphery 

123 of community trait space?; (2) do species with pioneer traits consistently occupy periph-  

124 eral positions within the trait space of tree communities?; (3) are locally rare tree species 

125 more spatially clustered than common species? The answers to these key questions are 

12- largely consistent across forest plots from the temperate zone to the tropics on two conti-

127 nents. Specifically, rare species tend to contribute more than expected to community 

Page 7 of 63 Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7 

7 

functional diversity, species with pioneer traits are not consistently occupying the periph-128 

eral positions, and rare species tend to be more spatially aggregated than common spe-129 

cies.  130 

131 

132 Methods 

133 Data collection 

134 This study analyzed eight forest dynamics plots from Asia and the Americas. For each 

135 forest plot, all individuals with a diameter at breast height greater than or equal to one 

13- centimeter were identified, measured and spatially mapped. The Guanacaste forest plot in 

137 Costa Rica was the only exception, where only individuals greater than or equal to three 

138 centimeters were recorded. The plots have experienced relatively little disturbance re-  

139 cently aside from the Luquillo forest plot in Puerto Rico which has experienced severe 

140 hurricane damage from Hurricane Hugo in 1989 and Hurricane Georges in 1998 

141 (Zimmerman et al., 1994; Comita et al., 2009) and the Wabikon Lake, Wisconsin forest 

142 plot has experienced selective logging in the past (early 1900’s). The forest plots are lo-  

143 cated in temperate, subtropical and tropical regions and the plot species richness ranges 

144 from 34 with 27,8- 1 individuals in Indiana, USA to 4- 9 with 95,- 09 individuals in 

145 Xishuangbanna, China (Table 1).  

At each forest plot, we compiled trait data for each of the species and calculated a 146 

species-level mean value for six functional traits: leaf area (LA), maximum height, spe-147 

cific leaf area (SLA), leaf nitrogen content (%N), leaf phosphorus content (%P) and 148 

wood specific gravity. The trait database for the Xishuangbanna forest plot did not con-149 

tain %N, %P or wood specific gravity values. Rather, these axes of function were repre-150 
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sented by leaf chlorophyll content and wood specific resistance (measured with a resisto-151 

graph; Rennitech Co., Germany). Leaf chlorophyll content and wood resistance values 152 

have been shown to be highly correlated with %N, and %P and wood density, respective-153 

ly (Vos & Bom, 1993; Loh et al., 2002; Isik & Li, 2003; Netto et al., 2005; Yang et al., 154 

2014). Thus the leaf and wood axes of plant function were measured in each of the forest 155 

plots. Trait data were collected from the plots or in some instances from the area immedi-156 

ately next to them and followed standardized methodology (Cornelissen et al., 2003). For 157 

further details on trait data collection please see Appendix A in Supporting Information. 158 

The traits quantified approximate the position of species along a continuum of 159 

ecological strategies on several axes (Díaz et al., 2015). The SLA, %N, %P and chloro-160 

phyll content of a species are components of the ‘leaf economics spectrum’ (Wright et 161 

al., 2004). Leaves with low structural and high nutrient investment tend to have higher 162 

photosynthetic rates and shorter leaf lifespans. The wood specific gravity and its corre-163 

late, wood specific resistance, represent the ‘wood economics spectrum’ (Chave et al., 164 

2009). Species with low wood specific gravity or resistances tend to exhibit rapid volu-165 

metric growth rates and higher mortality rates compared to those species with higher 166 

wood specific gravities and resistances. The maximum height of species relates to the 167 

adult light niche of species and light gradient partitioning. Finally, the LA reflects the leaf 168 

area deployed for resource (i.e. light) capture and is known to vary along forest scale abi-169 

otic gradients as well as along local light gradients (Dolph & Dilcher, 1980; Cornelissen 170 

et al., 2003). 171 

172 

Measuring functional diversity 173 
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This work integrates functional diversity with the species rank abundance distribution in 174 

forest plots. It is important to note that this means that our approach and inferences are 175 

limited to the topic of local rarity and not the regional scale rarity of species. Our ap-176 

proach provides information about the relative contribution of each of the species to the 177 

community functional diversity (Gaston, 2012; Mi et al., 2012). We quantified functional 178 

diversity using the functional richness (FRic) metric from Laliberté & Legendre (2010). 179 

The FRic is the volume of a convex hull encompassing the multivariate trait space of the 180 

species in a sample and therefore approximates the multivariate range of traits in the 181 

samples. The FRic metric is a good indicator of environmental filtering acting on the 182 

edges of trait space and it conceptually aligns with the goals of the present work, which 183 

asks whether increasingly rare species tend to occupy the periphery of multivariate trait 184 

space (Cornwell et al., 2006).  Furthermore, it does not include abundance information, 185 

which is critical for our study that required a measure of functional diversity that is inde-186 

pendent of the abundance distribution. We utilized the function dbFD in R package ‘FD’ 187 

(Laliberté & Legendre, 2010) to calculate FRic. Trait values were log-transformed, if 188 

necessary, to approximate normality prior to the dbFD analyses. The dbFD function 189 

scales all trait data and performs a principal coordinate analysis (PCoA) to provide or-190 

thogonal axes prior to calculating FRic. The number of PCo axes selected to calculate 191 

FRic followed Laliberté & Legendre (2010) where the number of PCo axes retained is 192 

equal to the number of the species in the community minus 1. 193 

 194 

Integrating abundance distributions and functional richness 195 
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To quantify the contribution of locally rare species to community functional richness for 196 

each assemblage, we integrated the standardized effect size (SES) for FRic with species 197 

rank abundance. In the following, we will describe the method to obtain the SES FRic 198 

values and how we compared it with the species abundance rank values. Our method fol-199 

lows that developed by Mi et al. (2012) who related phylogenetic diversity to rank abun-200 

dance distributions. The first step was to calculate the observed FRic values. This method 201 

first computes the functional richness for the first and second most abundant species in 202 

the forest. Next, the third most abundant species is added to the sample and the functional 203 

richness metric is again computed and recorded. This is repeated adding increasingly rare 204 

species to the sample until the second most rare species is added (Figure 1).  205 

The FRic metric is correlated with species richness (Laliberté & Legendre, 2010). 206 

Thus, it is not possible to compare the FRic value across samples including increasingly 207 

rare species that differ in their number of species. A null model is, therefore, necessary to 208 

produce the expected distribution of FRic values given the observed species richness of a 209 

sample. Thus, for the second step in our analyses we generated a null distribution of val-210 

ues to estimate standardized FRic values. The null model was accomplished by random-211 

izing the names of species 999 times on the trait data matrix in a plot. Thus, the species 212 

pool for the randomizations consisted of only the species within each plot. The FRic val-213 

ues for samples with increasingly rare species were computed as before, but this time 214 

with randomized trait data. At the end we had a distribution of 999 random FRic-215 

abundance relationships per plot that could be compared to our observed relationship. For 216 

each species along the species abundance rank distribution we calculated a SES FRic by 217 

subtracting the mean of the null distribution of FRic values for that species from the ob-218 
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served FRic and divided by the standard deviation of the null distribution. Therefore, pos-219 

itive SES FRic values indicated a higher than expected observed FRic value and negative 220 

SES FRic values indicated a lower than expected observed FRic value. Since a FRic of 221 

only one species cannot be computed, the most abundant species is never analyzed by 222 

itself and the rarest species is never analyzed because the standardized effect size must be 223 

zero when all species are sampled (i.e. there is no variance in the null distribution). At the 224 

end we obtained a set of SES FRic values equal to the length of the total number of spe-225 

cies minus two for each plot. 226 

The last step was to compare the SES FRic values along the species rank abun-227 

228 dance axis. On the left- hand side of the x- axis is the sample containing only the two most 

229 abundant species and increasingly rare species are added as one moves along the x- axis. 

230 A change in the y- axis value, the SES FRic, is expected if the added species to the sample 

231 (i.e. the next rarest species) increases or decreases the functional diversity more than ex-  

232 pected based on a randomly added species. If there is a decreasing trend in SESs along 

233 the x- axis this indicates that as one adds less and less abundant species to the sample, less 

234 than expected functional diversity accumulates. In other words, the less abundant species 

235 are generally functionally similar to the more abundant species already in the sample. 

23- Conversely, if there is an increasing trend in the SESs along the x- axis, less abundant 

237 species are more functionally diverse than expected and functionally divergent from the 

238 more abundant species already in the sample. 

239 

Quantifying trends in functional diversity along the abundance distribution 240 
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2K1 Trends in the SES FRic values along the rank abundance distribution are used to indicate 

2K2 the relative contribution of increasingly rare species to community FRic. Thus, a critical 

2K3 step for interpreting FRic-rank abundance relationships is to determine: first, whether 

2KK there are breaking points along the curve that indicate a change in the trend of the curve; 

2K5 and second, whether the trends in the curve are significantly increasing or decreasing, 

2K- which would be indicative of rarer species adding more than expected or less than ex- 

2K7 pected functional diversity to the community. Thus, we first used piece-wise regression to 

2K8 identify subseries (i.e. significant breakpoints) in each of the analyses and significance 

2K9 was assessed with a structural change test using the vhowws F- statistic method as de- 

250 scribed in Mi et al. (2012). We used Akaike information criteria (AIv) to compare a sim- 

251 ple linear model with the piecewise linear model. For all the plots piece-wise linear mod- 

252 els were consistently better than simple linear model  (lower AIv values for piece-wise 

253 linear models than for simple linear models, Appendix B Table B1 in Supporting Infor- 

25K mation). Second, we used a Mann-Kendall test to quantify whether each sub- eries exhib- 

255 ited a non-randomly increasing or decreasing trend in the standardized effect size values. 

25- Since the Mann-Kendall test may be sensitive to autocorrelation in the data a permutation 

257 approach using block bootstrapping is recommended (Wilks, 1997). erved autocorrela- 

259 tion where block size was set at the maximum size at which continuous lag correlations 

2-0 were significant. Thus, blocks were randomly sampled with replacement to construct null 

2-1 sub- eries of standardized effect sizes. A Mann-Kendall was then calculated for the null 

2-2 sub- eries and this was repeated 999 times to generate a null distribution to which the ob- 

2-3 served Mann-Kendall for that sub- eries could be compared and a p-value could be esti-
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mated. We utilized the function MannKendal in R package ‘Kendall’ and function 264 

tsboots in R package ‘boot’ to perform these analyses. 265 

 266 

Evaluating individual trait ranges 267 

In order to determine: (a) whether rare species increase FRic because they are potentially 268 

pioneer species with low wood density, high leaf nutrient content (i.e. %P and %N) or 269 

high specific leaf area (Bazzaz, 1980) and (b) whether increases in FRic with rarity 270 

across all forests are generally associated with the increase in the range for a particular 271 

trait across all forests, we plotted the range of individual trait values as increasingly rare 272 

species are added. This allowed us to visualize how the range of an individual trait 273 

changes as increasingly rare species are added and it is the uni-variate analog to our mul-274 

tivariate FRic analyses. As in our multivariate analyses, our uni-variate analyses also es-275 

timated breakpoints and performed the structural test using the Chow's F- statistic method 276 

to evaluate whether the increases in the ranges of leaf traits and decreases in wood specif-277 

ic gravity were consistently associated with rare species. We used piece-wise regression 278 

to identify subseries in relationships between maximum trait range and rank abundance as 279 

well as minimum trait range and rank abundance.   280 

281 

Quantifying spatial aggregation of individuals within species  282 

We quantified the spatial aggregation of individuals within species at several scales by 283 

computing the omega (Ω) metric developed by Condit et al. (2000). Omega evaluates the 284 

population density of each focal tree of each species within concentric circles with radii 285 

of 5, 10, 20, 30, 40 and 50 m. Thus, for a given species, Ω indicates the density of con-286 
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specifics in the neighborhood. This value is divided by the total population density of a 287 

particular species for the entire plot. Omega values equal to one indicate a perfectly ran-288 

dom distribution. At short distances, Ω values higher than one indicates aggregation and 289 

Ω values lower than one indicates more even spacing. To ensure that our aggregation 290 

analyses were not inherently biased by differences in species abundance, we used a com-291 

plete spatial randomness simulation to test whether species had Ω values that were signif-292 

icantly higher or lower than expected from a randomly dispersed species. In particular, 293 

we calculated 999 random Ω values by shuffling species names across the XY locations 294 

of all individuals in the forest plot each time calculating an Ω value for each species. This 295 

randomization considers the simplest null scenario assuming complete spatial random-296 

ness and independence. The mean of the null distribution of Ω values was subtracted 297 

from the observed Ω values and divided by the standard deviation of the null omega val-298 

ues to result in a standardized effect size (SES) of Ω. A SES of Ω higher than zero indi-299 

cates a species is more spatially aggregated than expected whereas a SES Ω value less 300 

than zero indicates a species is more evenly dispersed in space than expected. In order to 301 

examine whether rare species tended to be more spatially clustered than common species, 302 

we performed Spearman correlations between SES Ω values and log-transformed species 303 

abundance. If rare species are more spatially clustered than common species, then a nega-304 

tive Spearman correlation is expected. 305 

306 

Results 307 

The results from six of the eight forest plots (Indiana, Changbaishan, Fushan, Guana-308 

caste, Gutianshan and Xishuangbanna) were consistent with downward trends on the left 309 
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side and upward trends on the right side of the SES FRic curves (Figure 2, Appendix B 310 

Table B1, Table B2 in Supporting Information). The breakpoints for these six plots were 311 

located in the right hand of the curve (rare species) indicating that there are significant 312 

changes of these downward trends to upward trends (Figure 2, Appendix B Table B1). In 313 

other words, the rarest species in these forest plots were adding more to the overall com-314 

munity FRic than expected. 315 

We further considered the results using an ad-hoc criterion for describing rare 316 

species (<1 individuals for a species per hectare) (Hubbell & Foster, 1986) to evaluate if 317 

the breakpoints were associated with what may commonly be considered "rare" species. 318 

The results show that, in general, the breakpoints were very close to values that match the 319 

criteria for "rare" species used by Hubbell & Foster (1986) (Figure 2). Combined, the re-320 

sults for the trends and the breakpoints indicate that the progressively rare species add 321 

more than expected to the functional diversity of the tree community (Figure 2, Appendix 322 

B Table B1, Table B2). For the other two plots (Wabikon Lake and Luquillo), the trends 323 

were more complex and rare species did not consistently contribute more than expected 324 

to the functional diversity of the community (Figure 2, Table B1, Table B2). For these 325 

two plots, the breakpoints were located on both the left and the right hand of the curve 326 

(Table B1), and the trends were downwards (Figure 2, Table B2).  327 

When the ranges of individual traits were evaluated, we found no consistent 328 

trends across the different plots indicating that traits related with pioneer species (i.e. low 329 

wood density, high leaf nutrient content, high specific leaf area) are not consistently as-330 

sociated with the rarest species (Appendix B Table B3 Figures B1-B8). Specifically, for 331 

Indiana, Changbaishan, Fushan, Guanacaste, Gutianshan and Xishuangbanna plots, the 332 
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breakpoints on the right hand of the curve (rare species) were not consistently found for 333 

leaf trait maximum values and wood density minimum values (Table B3, Figures B1-B8). 334 

The results for the plots with historical disturbance, Wabikon Lake and Luquillo showed 335 

significant changes in the trends in the left-hand of the curves (common species), but 336 

again the traits were not always consistent with the expectation for pioneer species (Table 337 

B3). Overall, we found no consistent support for our results being due to pioneer species 338 

being rare.  339 

We further tested for evidence regarding whether rare species are spatially aggre-340 

gated. This was done by evaluating the correlation between species abundance and SES 341 

Ω values. The results show strong evidence that rare species tend to be more spatially ag-342 

gregated than common species in all forests and spatial scales (Figure 3, Appendix B Ta-343 

ble B4). Common species tended to have negative SES Ω values while rare species tend-344 

ed to have positive SES Ω values. Some rare species were highly clustered distributed at 345 

the smallest annulus size (5m) (Figure 3) as shown in the Wisconsin, Luquillo, Guana-346 

caste and Gutianshan plots (Figure 3b, e, f, g). 347 

348 

Discussion 349 

A central goal of this study was to quantify whether rare species are functionally distinct 350 

from more common species, thereby adding more than expected functional diversity to 351 

tree communities worldwide (Lawton, 1999; Gaston, 2012). Our results show that in six 352 

of the eight plots, rare species tend to be functionally unique indicating rare species are 353 

not rare because functionally similar species have pre-empted or excluded them. These 354 

results suggest that species abundance distribution is not only the result of historically 355 
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contingent factors where the sequence and timing of functionally similar species arriving 356 

is the main determinant of their abundance (Chase, 2003, 2007; Fukami, 2015). Instead 357 

the combination of traits that characterize rare species may allow them to exploit differ-358 

ent resources and therefore play an alternative role within the community as suggested by 359 

similar results for other taxa (Mouillot et al., 2011, 2013; Leitaõ et al., 2016). However, 360 

in two of our study plots, the Wabikon Lake, Wisconsin and Luquillo, Puerto Rico, the 361 

results showed different trends and the breakpoints were associated to common species. 362 

These two forests have both experienced past human disturbance via selective logging. 363 

The Luquillo plot has experienced two major hurricanes in the past 30 years (Thompson 364 

et al., 2002) and the dynamics at Luquillo plot have shown a higher functional turnover 365 

during the last 10 years compared with a non-disturbed tropical forest in Panama 366 

(Swenson et al., 2012). It is possible that this disturbance has affected the dynamics of 367 

these forests having an important effect on the functional composition of the plant com-368 

munities. As forested ecosystems become increasingly disturbed in the future, it may well 369 

be that functional diversity will be reduced through the loss of rare functionally divergent 370 

species, and functional homogenization through space and along the abundance distribu-371 

tion may become more common.  372 

 373 

Rarity and specialization 374 

A potential explanation for unifying the results for the eight plots is that weedy pioneer 375 

tree species with unique peripheral trait values (Bazzaz, 1980) are driving all of the ob-376 

served results across forests. Specifically, in the six undisturbed forests, pioneer species, 377 

usually described as rare members of pristine communities and specialized on rare gap 378 
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environments, might be the species responsible of the observed pattern of functionally 379 

distinct rare species (Hubbell & Foster, 1986). Under this scenario, rarity would primarily 380 

be driven by the availability of habitats and functional specialization. However, upon ex-381 

amination of increases in individual trait ranges as progressively rare species are added in 382 

each forest plot, we find no clear and consistent evidence that pioneer species with 383 

unique trait values are the determinant of our results. For example, some leaf traits 384 

showed increases associated with rare species, as it is the case for Trevesia palmata (Ara-385 

liaceae), a tree characterized by big leaves and no side branches, which is a very rare spe-386 

cies in the Xishuangbanna tree community. However, the increases in leaf traits for other 387 

non-disturbed forest plots were not always evident or were also associated with signifi-388 

cant decreases in leaf trait values. For example, Lonicera monantha (Caprifoliaceae) is 389 

one of the rarest species in the Changbaishan plot, but it is not a pioneer species, instead 390 

is an understory tree and shade tolerant. Therefore, these results provide little support for 391 

the pioneer habitat specialization hypothesis linked to rarity. 392 

Rare species might not be necessarily pioneers, but they may be specialized in 393 

other ways. We attempted to explore this possibility by analyzing the strength of the as-394 

sociation between rare species and elevationally rare habitats compared to common spe-395 

cies, suggesting potential specialization to particular elevations (Appendix C). Elevation, 396 

often linked to other topographical variables, has been found to play an important role in 397 

determining species distribution in tropical forest and potentially a key factor determining 398 

habitat associations (Baldeck et al., 2013). We evaluated the preferred elevation of spe-399 

cies, ordered from most rare to most common, against the relative abundance of the ele-400 

vation bins ordered from most rare to most common. We failed to find evidence support-401 
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ing the habitat specialization for rare species aside from a very weak positive correlation 402 

in a few plots and this was consistent across bin sizes (Appendix C). However, we cau-403 

tion that the analytical approach used had several flaws that hinder our ability to com-404 

pletely reject the rare species-specialists relationship. Specifically, other habitat variables 405 

that were not measured that are not or loosely correlated with elevation in the plots may 406 

be axes upon which rare species specialize. Furthermore, it is also important to recall that 407 

our analyses concern local rarity both in species and elevation and we cannot speak to 408 

whether the rare species-specialists relationship is supported at larger spatial scales. 409 

 410 

Rarity and spatial aggregation 411 

We further tested whether locally rare species are spatially aggregated. Our results show 412 

that locally rare species are more spatially aggregated than common species in all forests 413 

and spatial scales suggesting that populations of locally rare species are small because: 414 

(1) they are specialized on rare habitats; (2) locally rare species are sink populations and 415 

their spatial dispersion is limited due to rare dispersal events and a lack of reproduction 416 

and population spread, which combined drive the clustered individual spatial patterns. 417 

Although previous studies have found similar patterns, where locally rare species tend to 418 

be more clumped than common species (Hubbell, 1979; Condit, 2000; Li et al., 2009), 419 

one additional hypothesis that would help to clarify the role of rare species should be to 420 

evaluate their performance. In this respect, Hubbell (1979), showed that for a tropical 421 

forest analyzed in this study (Guanacaste, Costa Rica), rare species tend to exhibit poor 422 

reproductive performance compared with common species, suggesting that specialization 423 

might not be the main factor driving rarity. Supporting these results, recent work by 424 
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Mangan et al. (2010) experimentally demonstrated that rare species are more susceptible 425 

to pathogens. However, previous work by Wills et al. (2006) that included two of our 426 

study forests showed that rare species have preferential recruitment, but quantifying de-427 

mographic rates for rare species can be challenging (Condit et al., 2006). Wills et al. 428 

(2006) argued that their results were evidence of frequency-dependent selection favoring 429 

rare species thereby maintaining tree diversity. Thus, more studies are needed in order to 430 

fully support or reject it the specialization hypothesis.   431 

In some ways, it may be useful to consider our results in the context of the core-432 

satellite hypothesis (Hanski, 1982). Hanski (1982) presented a classification of species 433 

according to their abundance and spatial distribution (regionally). In this context, locally 434 

small populations in a region may be considered satellite and perhaps sink populations, 435 

whereas locally large populations in a region may be considered core and perhaps source 436 

populations. One prediction arising from this would be that the locally rare populations 437 

like those we presently analyze are satellite and perhaps sink populations ill-suited to the 438 

local environment. Due to data limitations we were unable to address whether locally rare 439 

species were ill-suited to local conditions and we have in many cases little information 440 

regarding whether the species in our forest plots are locally and regionally rare. Thus, at 441 

present we cannot fully address the predictions arising from the core-satellite literature. It 442 

is interesting to note, however, that recent work by Ricklefs & Renner (2012) has indicat-443 

ed that there is phylogenetic signal in local abundance in forest plots worldwide. This 444 

may indicate that there is inherent rarity in lineages that is evident locally and regionally, 445 

but it is still unclear from this evidence whether this rarity is due to specialization on rare 446 

habitats or some other process. 447 

Page 21 of 63 Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

21 

21 

448  Together, our results fail to support the notion that rarity is driven by the ecologi6 

442 cal similarity between rare species and competitively superior or earlier arriving common 

450 species. Also, we present tentative evidence that did not support the link between special6 

451 ization and rarity based upon our analyses of elevational data and shade tolerance strate6 

452 gies. We do note, however, that soil nutrient and light data would be preferred for such an 

453 analysis and future work on this topic is merited. Our results have additional implications 

454 beyond those for community structure and assembly. First, because locally rare species 

455 disproportionally contribute to community functional diversity, it is expected that they 456 

may also disproportionally contribute to ecosystem function (Tilman et al., 1997; 

457 Mouillot et al., 2011). Recent work has indicated this may be the case in several tropical 

458 systems (Mouillot et al., 2013). The present work show that rare species tend to be func6 4

52 tionally unique, but they may not be disproportionally influencing present day function6 4(9 

ing. However, functionally unique rare species are still likely to be critical for the stabil6 4(1 

ity of ecosystems undergoing change. Thus, the loss of rare species in ecosystems not on6 4(2 

ly reduces the species and functional dimensions of biological diversity (Hector & 

463 Bagchi, 2007), but it also likely has the potential to negativs are still likely to be critical 

for the stabil6 !(1 ity of ecosystems undergoing change. Thus, the loss of rare species in 

ecosystems not on6 !(2 ly reduces the species and functional dimensions of biolely impact the 

ability of eco6 4(4 systems to respond to change or forcing. Second, a great deal of emphasis is 

now being 465 placed on building large plant trait and spatial datasets for the purpose of 

mapping the 466 distribution and diversity of plant function worldwide to facilitate vegetation 

modeling 467 and biodiversity science (Kattge et al., 2011; Lamanna et al., 2014; van 

Bodegom et al., 468 2014). Such databases will inevitably be biased towards the inclusion of 

locally common 469 species and the exclusion of locally rare species. This problem will be 

exacerbated in 470 tropical systems where it is likely that such efforts will be prone to 

under6estimate tropi6
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cal functional diversity compared to temperate functional diversity. Thus, future analyses 471 

should attempt to avoid such biases and, just as importantly, a great deal more infor-472 

mation regarding the functional diversity of entire tropical assemblages will be needed. 473 
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Table 1. Location and description of the forest dynamics plots. 695 

Forest Plot Latitude Longitude 
Forest 

Type 

Plot 

Size 

(ha) 

Census 

Year 

Species 

Richness 

Lilly Dickey 
Woods, Indiana, 
U.S.A. 

39.2361 -86.2204 
Temperate 

forest 
25 2004 34 

Wabikon Lake, 
Wisconsin, U.S.A 

45.5508 -88.7964 
Temperate 

forest 
25.6 2008 38 

Changbaishan, 
China 

42.3833 128.083 
Korean 

pine mixed 
forest 

25 2004 51 

Fushan, Taiwan 24.7614 121.555 
Subtropical 
evergreen 

forest 
25 2002 110 

Luquillo, Puerto 
Rico 

18.3262 -65.816 
Lowland 
moist for-

est 
16 2012 125 

Guanacaste, Costa 
Rica 

10.8833 -85.44 
Tropical 
dry forest 

14.44 2006 136 

Gutianshan, Chi-
na 

29.25 118.117 
Subtropical 
evergreen 

forest 
24 2012 159 

Xishuangbanna, 
China 

21.6117 101.574 
Tropical 

forest 
20 2007 469 

696 
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Figure captions 697 

Figure 1. A conceptual figure depicting how the species rank abundance distribution was 698 

integrated with functional diversity. In this highly simplified example there are five indi-699 

vidual species represented by different colors and shapes, sorted from most to least abun-700 

dant based on the number of individuals in the forest plot. Notice that in this example the 701 

rarest species in the community is functionally unique and that is why its shape is differ-702 

ent from the other species. The multivariate trait volume (in this simplified example, rep-703 

resented by the gray area) for the first three most abundant species is computed to repre-704 

sent the functional diversity. This measure is also referred to as functional richness. The 705 

volume is measured again including the fourth most abundant species. Here, the fourth 706 

species does not expand the volume. This process is repeated until we add the rarest spe-707 

cies, which in this case adds substantially to the functional richness. 708 

709 

Figure 2. The standardized effect sizes of functional diversity. a) Indiana, USA, b) Wis-710 

consin, USA, c) Changbaishan, China, d) Fushan, Taiwan, e) Luquillo, Puerto Rico, f) 711 

Guanacaste, Costa Rica, g) Gutianshan, China, h) Xishuangbanna, China. Positive values 712 

on the y-axis indicate that the species included in that calculation contribute more than 713 

expected to the functional diversity and negative values indicate that they contribute less 714 

than expected to the functional diversity. Positive trends indicate that increasingly rare 715 

species are disproportionally increasing the functional diversity of the system. Vertical 716 

doted grey lines in the panels indicate significant breakpoints in the piecewise regression 717 

(Appendix B Table B1). Dashed portions of the trend lines indicate species that have less 718 

Page 34 of 63Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



34 

34 

than one individual per hectare, which is a commonly used categorization for 'rarity' in 719 

tree communities. 720 

721 

Figure 3. The degree of spatial aggregation of individuals within a species. SES Ω values 722 

were plotted against their forest-wide abundance. The radius circle (Ω) surrounding each 723 

individual used for this figure was 5m. Positive SES Ω values indicate a higher degree of 724 

spatial aggregation. All correlations were statistically significant (P < 0.01). Species with 725 

no conspecific individuals within the 5m radius were omitted from these analyses but the 726 

correlations were still significant. Overall the trends show that rare species tend to be 727 

more clustered than common species. 728 
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Supporting Information 

The role of functional uniqueness and spatial aggregation in explaining rarity in 

trees  

María Natalia Umaña, Xiangcheng Mi, Min Cao, Brian J. Enquist, Zhanqing Hao, 

Robert Howe, Yoshiko Iida, Daniel Johnson, Luxiang Lin, Xiaojuan Liu, Keping Ma, 

I-Fang Sun, Jill Thompson, Maria Uriarte, Xugao Wang, Amy Wolf, Jie Yang, Jess 

K. Zimmerman, and Nathan G. Swenson. 

Appendix A: Supplementary methods on trait data collection. 

Contents: 

1. Text: Methods

2. Table A1. Trait ranges for all the plots.

Text: Supplementary methods on trait data collection. 

Traits were collected from 5-10 individuals per species from the area within and 

around the forest dynamics plots when possible or all available individuals when not 

possible. In some instances, the trait data were not collected in, or in the area 

immediately around, the forest plot. Specifically, maximum height was compiled 

from literature. For the species in Lilly Dickey Woods, Indiana, traits were collected 

during 2010 from forests in Michigan and Wisconsin. Trait data for Wabikon Lake, 

Wisconsin were collected in 2010 in the plot; trait data for Changbaishan, China were 

collected in 2011 in the plot; trait data for Fushan, Tawian were collected in 2011 in 

the plot; trait data for Luquillo, Puerto Rico were collected between 2007 and 2008 in 

the plot; trait data for Guanacaste, Costa Rica, were collected between 2006 and 2007 

in the plot; trait data for Gutianshan, China were collected between 2009 and 2010 in 

the plot; and trait data for Xishuangbanna, China species were collected between 2010 

and 2011 in the plot. Table A1 (Appendix A1) shows all the ranges fro the different 

traits across all the plots. 
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Table A1. Trait ranges for all the plots. 

Plot Maximum 

Height 

WSG/ 

WSR 

 %P 

/Chlorophyll 

content 

%N SLA LA 

Indiana, USA 3 0.3 0.1 1.3 30.0 0.5

60 0.8 0.9 3.9 585.2 405.5 

Wisconsin, 

USA 

8 0.3 0.1 1.0 77.6 1.1 

150 0.7 0.4 2.9 585.2 530.3 

Changbaishan, 

China 

1.5 0.3 1.2 1.3 57.1 6.0 

32 0.7 2.9 3.6 585.0 796.1 

Fushan, Taiwan 2.3 0.2 0.0 0.9 86.8 4.4 

28.6 0.8 0.3 4.1 400.2 1658.8 

Luquillo, 

Puerto Rico 

1.524 0.3 0.0 1.0 18.8 10.0 

30.48 1.0 0.3 5.1 1304.2 60383.3 

Guanacaste, 

Costa Rica 

3 0.2 0.0 1.3 33.5 1.4 

45 1.0 0.2 5.8 406.0 212.4 

Gutianshan, 

China 

0.8 0.3 0.0 0.9 59.6 0.5

45 0.8 0.2 3.7 460.9 229.5 

Xishuangbanna, 

China 

2 11.22 24.98 NA 14.48 1.86 

60 1109.39 67.12 NA 394.34 2395.26 

Note: The plot in Xishuangbanna, China did not contain wood specific gravity, %N 

and %P values, instead these axes of function were represented by leaf chlorophyll 

content and wood specific resistance (WSR). WSG represents wood specific gravity, 

SLA represents specific leaf area, LA represents leaf Area. 
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Supporting Information 

The role of functional uniqueness and spatial aggregation in explaining rarity in trees 

María Natalia Umaña, Xiangcheng Mi, Min Cao, Brian J. Enquist, Zhanqing Hao, Robert Howe, 

Yoshiko Iida, Daniel Johnson, Luxiang Lin, Xiaojuan Liu, Keping Ma, I-Fang Sun, Jill Thomp-

son, Maria Uriarte, Xugao Wang, Amy Wolf, Jie Yang, Jess K. Zimmerman, and Nathan G. 

Swenson. 

Appendix B: Supplementary results. 

Contents: 

1. Table B1. Breakpoints for functional richness metrics.

2. Table B2. Man-Kendall.

3. Table B3. Breakpoints associated for leaf ranges.

4. Table B4. Spatial aggregation.

5. Figures B1-B8. Variation in individual trait ranges for each plot.
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TABLES 

Table B1.  Breakpoints and significance values associated to the structural change test for rela-

tionships between SES FRic values and rank species abundance. 

Plot

Estimated 

breakpoint F

P-value 

(<) AIC(seg) AIC(lm) 

Indiana, USA 28.92 61.91 8.21E-11 31.34695 68.24729 

Wisconsin, USA 9.809 3.74 0.03598 50.64894 47.86799 

Wisconsin, USA 24.44 3.38 3.38E-06 

Changbaishan, China 25.76 60.29 1.86E-13 58.69107 116.7757 

Fushan, Taiwan 58.96 900.01 2.20E-16 66.14535 200.8568 

Fushan, Taiwan 60.1 162.14 2.20E-16 

Luquillo, Puerto Rico 11.25 13.04 7.68E-06 195.2497 269.1527 

Luquillo, Puerto Rico 107.4 69.61 2.20E-16 

Guanacaste, Costa Rica 82.43 33.66 1.72E-12 198.3929 247.3509 

Gutianshan, China 154.1 255.00 2.20E-16 211.5991 284.6906 

Xishuangnanna, China 180.6 996.32 2.20E-16 326.2578 453.2756 
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Table B2. Mann-Kendall trend test for each plot and block bootstrap results. 

Plot 

Kendall’s 

tau statistic 

(τ) Probability 

Abundance 

rank range 

Indiana, USA 
-0.846 <0.001 (2-28) 

0.733 0.975 (26-32) 

Wisconsin, USA 

-0.415 0.061 (2-10) 

0.667 0.912 (11-24) 

-0.867 0.009 (24-34) 

Changbaishan, China 
-0.732 <0.001 (2-26) 

0.620 0.999 (27-52) 

Fushan, Taiwan 
-0.599 <0.001 (2-59) 

0.145 0.858 (60-110) 

Luquillo, Puerto Rico 

-0.867 0.028 (2-11) 

-0.653 <0.001 (12-107) 

-1.000 <0.001 (108-125) 

Guanacaste, Costa Rica 
-0.927 0.015 (2-82) 

0.227 0.934 (83-136) 

Gutianshan, China 
-0.892 <0.001 (2-154) 

0.333 0.494 (155-159) 

Xishuangbanna, China 
-0.602 <0.001 (2-180) 

0.156 0.995 (180-469) 
Note:  Positive Mann-Kendal’s statistic value indicates that the data tend to increase along the species abundance 

rank; a negative trend indicates the opposite. The probability column represents the probability that an observed tau 

value is greater that in null tau values. The rank abundance range column represents the species rank range that was 

used. 
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Table B3. Breakpoints and significance values associated to the structural change test for correla-

tions between maximum trait values or minimum trait values and rank abundance.  

Plot 

Maximum Range Lower range 

Trait 

Break

point Sp. Ab F P-value 

Break

point 

Sp. 

Ab F P-value 

Indiana, 

USA 

LA 18.90 73 2.22 2E-04 28.99 5 1.79 7E-03 

SLA 5.31 1158 1.96 2E-03 28.31 5 1.55 3E-02 

N 28.41 5 1.63 2E-02 4.76 1974 2.13 5E-04 

P 28.78 5 1.60 2E-02 22.54 45 2.24 2E-04 

WD 25.03 28 1.63 2E-02 2.97 7912 1.14 3E-01 

Wisconsin, 

USA 

LA 4.25 3457 1.27 2E-01 4.66 3457 2.33 8E-05 

SLA 15.95 176 2.17 3E-04 4.95 3457 2.21 2E-04 

N 8.00 1751 2.25 2E-04 4.70 3457 2.07 8E-04 

P 6.01 2172 2.29 1E-04 4.69 3457 1.63 2E-02 

WD 23.99 32 1.88 3E-03 5.13 2517 2.24 2E-04 

Chang-

baishan, 

China 

LA 12.75 681 2.58 7E-06 7.33 1598 2.25 2E-04 

SLA 46.06 2 1.94 2E-03 7.62 1598 2.71 2E-06 

N 13.30 515 2.33 8E-05 7.72 1598 2.79 7E-07 

P 17.00 251 2.55 9E-06 6.41 2468 2.79 7E-07 

WD 41.23 17 1.55 3E-02 38.32 18 1.49 5E-02 

Fushan, 

Taiwan 

LA 12.98 2343 2.36 6E-05 39.34 355 3.40 4E-10 

SLA 38.56 371 3.33 1E-09 9.57 2984 3.43 3E-10 

N 63.67 64 2.73 1E-06 60.00 86 3.17 7E-09 

P 33.20 489 3.36 6E-10 77.02 17 2.24 2E-04 

WD 14.19 2256 3.73 3E-12 79.93 13 2.22 2E-04 

luquillo, 

Puerto Rico 

LA 96.50 6 2.75 1E-06 2.03 3972 3.99 6E-14 

SLA 104.74 4 2.01 1E-03 88.11 9 3.04 4E-08 

N 39.69 164 3.91 2E-13 59.09 69 3.44 2E-10 

P 7.96 1802 2.83 5E-07 38.42 185 3.98 7E-14 

WD 3.86 3292 2.15 4E-04 8.00 1517 4.37 1E-15 

Guana-

caste, Costa 

Rica 

LA 72.83 30 4.13 6E-15 25.41 232 4.10 9E-15 

SLA 5.00 624 4.63 4E-16 21.97 311 3.20 5E-09 

N 23.48 243 4.30 4E-16 35.37 148 3.46 2E-10 

P 46.57 79 2.89 2E-07 30.81 191 2.67 3E-06 

WD 39.49 101 4.10 1E-14 3.64 921 2.71 2E-06 

Gu-

tianshan, 

China 

LA 67.01 140 4.28 4E-16 28.49 1334 4.65 3E-07 

SLA 146.00 2 2.66 3E-06 98.39 28 3.29 2E-09 

N 71.91 93 3.97 8E-14 38.32 567 4.61 5E-07 

P 111.00 16 3.89 3E-13 118.32 13 2.73 1E-06 

WD 11.18 3508 4.06 2E-14 123.18 9 2.62 5E-06 

Xishuang-

banna, 

LA 260.12 14 7.89 2E-16 264.34 13 6.45 4E-16 

SLA 235.36 20 8.10 3E-16 295.02 8 7.39 2E-14 
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China Chlo-

rophy

ll 123.32 104 7.73 2E-16 383.60 2 4.78 2E-16 

WSG 380.89 2 6.25 1E-15 378.39 2 4.92 2E-16 
Note: The breakpoint column indicates the abundance rank value where the trait value changed in its trend (maxi-

mum or minimum). The Sp.Ab represents the abundance of the species at the breaking point. Bold values show the 

candidate pioneer traits. 

* For Luquillo, Puerto Rico and Wisconsin, USA, we checked for pioneer traits associated to common species in-

stead of rare species, according to our original hypothesis. 
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Table B4. The degree of spatial aggregation of species in all forest dynamic plot communities. 

Plot Omega rho statistic S P-value 

Indiana, USA 5 -0.90 4376 <0.001 

10 -0.99 4580 <0.001 

20 -0.99 4586 <0.001 

30 -0.99 4574 <0.001 

40 -1.00 4590 <0.001 

50 -0.99 4584 <0.001 

Wisconsin, USA 5 -0.78 3606 <0.001 

10 -0.75 3550 <0.001 

20 -0.84 3728 <0.001 

30 -0.87 3786 <0.001 

40 -0.89 3826 <0.001 

50 -0.91 3862 <0.001 

Changbaishan, China 5 -0.86 10139 <0.001 

10 -0.90 10349 <0.001 

20 -0.96 10709 <0.001 

30 -0.98 10794 <0.001 

40 -0.99 10864 <0.001 

50 -1.00 10899 <0.001 

Fushan, Taiwan 5 -0.92 140575 <0.001 

10 -0.96 143041 <0.001 

20 -0.97 143957 <0.001 

30 -0.99 145340 <0.001 

40 -0.99 145818 <0.001 

50 -0.99 145911 <0.001 

Luquillo, Puerto Rico 5 -0.80 131458 <0.001 

10 -0.79 131252 <0.001 

20 -0.90 139019 <0.001 

30 -0.97 143898 <0.001 

40 -0.99 145542 <0.001 

50 -0.99 145599 <0.001 

Guanacaste, Costa Rica 5 -0.64 192632 <0.001 

10 -0.82 213463 <0.001 

20 -0.84 216340 <0.001 

30 -0.92 225283 <0.001 

40 -0.95 229140 <0.001 

50 -0.96 230807 <0.001 

 Gutianshan, China 5 -0.87 311219 <0.001 

-0.91 318239 <0.001 

20 -0.94 323775 <0.001 

30 -0.96 326615 <0.001 

40 -0.98 329504 <0.001 
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50 -0.98 329980 <0.001 

Xishuangbanna, China 5 -0.67 4086361 <0.001 

10 -0.72 4205348 <0.001 

20 -0.86 4562793 <0.001 

30 -0.91 4688648 <0.001 

40 -0.95 4773076 <0.001 

50 -0.97 4826073 <0.001 

Note: The results correspond to Spearman correlations between (Ω) and their forest-wide abundance. All species 

with abundances lower than one individual by hectare were removed from the analysis. 
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FIGURES 

Figure B1. Change in trait ranges for the Indiana, U. S. A. forest plot as a function of rank abun-

dance where increasingly rare species are added from left to right.  
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Figure B2. Change in trait ranges for the Wisconsin, U. S. A. forest plot as a function of rank 

abundance where increasingly rare species are added from left to right. 
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Figure B3. Change in trait ranges for the Changbaishan, China forest plot as a function of rank 

abundance where increasingly rare species are added from left to right. 
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Figure B4. Change in trait ranges for the Fushan, Taiwan forest plot as a function of rank abun-

dance where increasingly rare species are added from left to right. 
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Figure B5. Change in trait ranges for the Luquillo, Puerto Rico forest plot as a function of rank 

abundance where increasingly rare species are added from left to right. 
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Figure B6. Change in trait ranges for the Guanacaste, Costa Rica forest plot as a function of rank 

abundance where increasingly rare species are added from left to right.
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Figure B7. Change in trait ranges for the Gutianshan, China forest plot as a function of rank 

abundance where increasingly rare species are added from left to right. 
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Figure B8. Change in trait ranges for the Xishuangbanna, China forest plot as a function of rank 

abundance where increasingly rare species are added from left to right. 
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Supporting Information 

The role of functional uniqueness and spatial aggregation in explaining rarity in 

trees  

María Natalia Umaña, Xiangcheng Mi, Min Cao, Brian J. Enquist, Zhanqing Hao, 

Robert Howe, Yoshiko Iida, Daniel Johnson, Luxiang Lin, Xiaojuan Liu, Keping Ma, 

I-Fang Sun, Jill Thompson, Maria Uriarte, Xugao Wang, Amy Wolf, Jie Yang, Jess 

K. Zimmerman, and Nathan G. Swenson. 

Appendix C: Supplementary methods and results on elevational data. 

Contents 

1. Methods

2. Results

3. Table C1 Ranges of elevation for each plot.

4. Table C2. Correlations species rank abundance and its preferred

elevation. 

5. Figures C1-C4. Topography correlations for plots with significant

correlations. 

Text: Supplementary methods on quantifying whether rare species prefer 

elevationally rare habitats  

We used fine-scale elevation data in order to evaluate whether the relative abundances 

of species in a plot were related to the relative abundances of different elevations 

within each plot. Ideally, additional information regarding light habitats and soil 

nutrients would be incorporated into our analyses, but at present this information is 

not available. Further, elevation tends to be a correlate of soil nutrients and water 

gradients in forest dynamics plots suggesting that it is a reasonable proxy of soil 

habitats (John et al., 2007). 

To accomplish our analyses we utilized the known elevation of each 20 x 20 

m subplot in each forest plot. Thus, we obtained a distribution of elevations for each 

plot. This distribution was then binned every 1, 5 and 10 m. The number of 20 x 20 m 

subplots per bin represented the relative abundance of the bin. Because bin size 

decisions may influence the results we utilized three size intervals to quantify 

sensitivity to our binning decisions. Next, we calculated the elevation of each 

individual of each species in a plot and estimated the median value. This median 

value was used to estimate the preferred elevation for the species. The median values 

were translated into elevation bin numbers. Species and elevation bins were then 

sorted by their respective relative abundances and plotted against each other with the 
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rarest species and bin nearest the origin of the xy-plot. A spearman correlation was 

calculated with the expectation that if rare species are rare because they specialize on 

rare habitats, then there should be a positive rank correlation. 

Text: Results 

The results showed in general no significant correlation between the abundance and 

the elevation and only in few cases very weak positive correlation and this was 

consistent across bin sizes (Table C1, Table C2, Figures C1-C4). Thus, rare species 

generally do not appear to be associated with rare topographic habitats in the forests 

we investigated. 
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Tables 

Table C1. Ranges of elevation (in meters) for each plot. 

Plot Min elevation (m) Max elevation (m) Difference 

Lilly Dickey Woods, Indiana, 

U.S.A. 230.03 302.8 72.77 

Wabikon Lake, Wisconsin, U.S.A 488 514 26 

Changbaishan, China 791.8 809.5 17.7 

Fushan, Taiwan 400 1400 1000 

Luquillo, Puerto Rico 335 371 36 

Guanacaste, Costa Rica 140 779.9 639.9 

Gutianshan, China 42.72 57.12 14.4 

Xishuangbanna, China 724.4 842.4 118 

Table C2. Correlation between species rank abundance and its preferred elevation. 

Plot 

bin=1 bin=5 bin=10 

Rho  P-value Rho  P-value Rho  P-value 

Indiana, USA 0.43 0.01 0.57 <0.001 0.55 <0.001 

Wisconsin, USA 0.29 0.07 0.26 0.10 NA NA 

Changbaishan, China 0.28 0.06 0.28 0.05 NA NA 

Fushan, Taiwan 0.15 0.80 -0.1 0.28 -0.05 0.60 

Luquillo, Puerto Rico 0.02 0.80 0.24 <0.001 0.28 <0.001 

Guanacaste, Costa Rica 0.11 0.15 0.13 0.11 0.39 <0.001 

Gutiashan, China 0.16 0.07 0.12 0.12 0.19 <0.001 

Xishungbanna, China 0.1 0.02 0.08 0.06 0.1 0.03 
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Figures 

Figure C1. The relationship between species rank abundance (y-axis) ordered from 

rarest to most common and its preferred elevation ranked from the most rare elevation 

bin to the most common for species in the Indiana, U.S.A. forest plot. The panels 

represent the three elevation bin sizes used (1m, 5m, and 10m). Spearman rho 

correlations are provided. 

Page 60 of 63Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure C2. The relationship between species rank abundance (y-axis) ordered from 

rarest to most common and its preferred elevation ranked from the most rare elevation 

bin to the most common for species in the Luquillo, Puerto Rico forest plot. The 

panels represent the three elevation bin sizes used (1m, 5m, and 10m). Spearman rho 

correlations are provided.  
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Fo

Figure C3. The relationship between species rank abundance (y-axis) ordered from 

rarest to most common and its preferred elevation ranked from the most rare elevation 

bin to the most common for species in the Guanacaste, Costa Rica forest plot. The 

panels represent the three elevation bin sizes used (1m, 5m, and 10m). Spearman rho 

correlations are provided. 
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Figure C4. The relationship between species rank abundance (y-axis) ordered from 

rarest to most common and its preferred elevation ranked from the most rare elevation 

bin to the most common for species in the Gutianshan, China forest plot. The panels 

represent the three elevation bin sizes used (1m, 5m, and 10m). Spearman rho 

correlations are provided.  

Page 63 of 63 Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 64 of 63Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	FC wiley 22 thompson
	Umana 2017 Glob Ecol Biog



