3,288 research outputs found

    Comparisons of wing pressure distribution from flight tests of flush and external orifices for Mach numbers from 0.50 to 0.97

    Get PDF
    Wing pressure distributions obtained in flight with flush orifice and external tubing orifice installations for Mach numbers from 0.50 to 0.97 are compared. The procedure used to install the external tubing orifice is discussed. The results indicate that external tubing orifice installations can give useful results

    Complete Photoionization Experiments via Ultrafast Coherent Control with Polarization Multiplexing II: Numerics & Analysis Methodologies

    Full text link
    The feasibility of complete photoionization experiments, in which the full set of photoionization matrix elements are determined, using multiphoton ionization schemes with polarization-shaped pulses has recently been demonstrated [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)]. Here we extend on our previous work to discuss further details of the numerics and analysis methodology utilised, and compare the results directly to new tomographic photoelectron measurements, which provide a more sensitive test of the validity of the results. In so doing we discuss in detail the physics of the photoionziation process, and suggest various avenues and prospects for this coherent multiplexing methodology

    X-29A forward-swept-wing flight research program status

    Get PDF
    The X-29A aircraft is a fascinating combination of integrated technologies incorporated into a unique research aircraft. The X-29A program is multiple agency program with management and other responsibilities divided among NASA, DARPA, the U.S. Air Force, and the Grumman Corporation. An overview of the recently completed X-29A flight research program, objectives achieved, and a discussion of its future is presented. Also discussed are the flight test approach expanding the envelope, typical flight maneuvers performed, X-29A program accomplishments, lessons learned for the Number One aircraft, and future plans with the Number Two aircraft. A schedule for both aircraft is presented. A description of the unique technologies incorporated into the X-29A aircraft is given, along with descriptions of the onboard instrumentation system. The X-29A aircraft research program has proven highly successful. Using high fly rates from a very reliable experimental aircraft, the program has consistently met or exceeded its design and research goals

    Maximum information photoelectron metrology

    Full text link
    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of this coherent observable

    HiMAT flight program: Test results and program assessment overview

    Get PDF
    The Highly Manueverable Aircraft Technology (HiMAT) program consisted of design, fabrication of two subscale remotely piloted research vehicles (RPRVs), and flight test. This technical memorandum describes the vehicles and test approach. An overview of the flight test results and comparisons with the design predictions are presented. These comparisons are made on a single-discipline basis, so that aerodynamics, structures, flight controls, and propulsion controls are examined one by one. The interactions between the disciplines are then examined, with the conclusions that the integration of the various technologies contributed to total vehicle performance gains. An assessment is made of the subscale RPRV approach from the standpoint of research data quality and quantity, unmanned effects as compared with manned vehicles, complexity, and cost. It is concluded that the RPRV technique, as adopted in this program, resulted in a more complex and costly vehicle than expected but is reasonable when compared with alternate ways of obtaining comparable results

    Drag reductions obtained by modifying a box-shaped ground vehicle

    Get PDF
    A box-shaped ground vehicle was used to simulate the aerodynamic drag of high volume transports, that is, delivery vans, trucks, or motor homes. The coast-down technique was used to define the drag of the original vehicle, having all square corners, and several modifications of the vehicle. Test velocities ranged up to 65 miles per hour, which provided maximum Reynolds numbers of 1 times 10 to the 7th power based on vehicle length. One combination of modifications produced a reduction in aerodynamic drag of 61 percent as compared with the original square-cornered vehicle

    Time Distribution Using SpaceWire in the SCaN Testbed on ISS

    Get PDF
    A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream

    Distinct magnetotransport and orbital fingerprints of chiral bobbers

    Full text link
    While chiral magnetic skyrmions have been attracting significant attention in the past years, recently, a new type of a chiral particle emerging in thin films −- a chiral bobber −- has been theoretically predicted and experimentally observed. Here, based on theoretical arguments, we provide a clear pathway to utilizing chiral bobbers for the purposes of future spintronics by uncovering that these novel chiral states possess inherent transport fingerprints that allow for their unambiguous electrical detection in systems comprising several types of chiral states. We reveal that unique transport and orbital characteristics of bobbers root in the non-trivial magnetization distribution in the vicinity of the Bloch points, and demonstrate that tuning the details of the Bloch point topology can be used to drastically alter the emergent response properties of chiral bobbers to external fields, which bears great potential for engineering chiral dynamics and cognitive computing.Comment: Supplementary available upon reques

    Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    Get PDF
    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs

    Victim Simulator for Victim Detection Radar

    Get PDF
    Testing of victim detection radars has traditionally used human subjects who volunteer to be buried in, or climb into a space within, a rubble pile. This is not only uncomfortable, but can be hazardous or impractical when typical disaster scenarios are considered, including fire, mud, or liquid waste. Human subjects are also inconsistent from day to day (i.e., they do not have the same radar properties), so quantitative performance testing is difficult. Finally, testing a multiple-victim scenario is difficult and expensive because of the need for multiple human subjects who must all be coordinated. The solution is an anthropomorphic dummy with dielectric properties that replicate those of a human, and that has motions comparable to human motions for breathing and heartbeat. Two airfilled bladders filled and drained by solenoid valves provide the underlying motion for vinyl bags filled with a dielectric gel with realistic properties. The entire assembly is contained within a neoprene wetsuit serving as a "skin." The solenoids are controlled by a microcontroller, which can generate a variety of heart and breathing patterns, as well as being reprogrammable for more complex activities. Previous electromagnetic simulators or RF phantoms have been oriented towards assessing RF safety, e.g., the measurement of specific absorption rate (SAR) from a cell phone signal, or to provide a calibration target for diagnostic techniques (e.g., MRI). They are optimized for precise dielectric performance, and are typically rigid and immovable. This device is movable and "positionable," and has motion that replicates the small-scale motion of humans. It is soft (much as human tissue is) and has programmable motions
    • …
    corecore