8 research outputs found

    Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report

    Get PDF
    The therapeutic effect of mesenchymal stromal cells (MSCs) following myocardial infarction (MI) is small. This may be due to differences in cellular sources and donor age, route of administration, in vitro cellular manipulations and the short time course of follow up in many animal studies. Here, we compared MSCs from two different sources (adult bone marrow or Wharton’s jelly from umbilical cord) for their long-term therapeutic effect following MI in a rat model to evaluate the effect of donor age. MSCs (or control infusions) were given intravenously 24-48 hr after myocardial ischemia (MI) induced by coronary artery ligation. Cardiac function was assessed by ultrasound at time points starting from before MSC infusion through 68 weeks after MI. A significant improvement in ejection fraction was seen in animals that received MSCs in time points 25 to 31 wks after treatment (p <0.01). These results support previous work that show that MSCs can cause improvement in cardiac function and extend that work by showing that the beneficial effects are durable. To investigate MSCs’ cardiac differentiation potential, Wharton’s jelly MSCs were co-cultured with fetal or adult bone-derived marrow MSCs. When Wharton’s jelly MSCs were co-cultured with fetal MSCs, and not with adult MSCs, myotube structures were observed in two-three days and spontaneous contractions (beating) cells were observed in fiveseven days. The beating structures formed a functional syncytium indicated by coordinated contractions (beating) of independent nodes. Taken together, these results suggest that MSCs given 24-48 hr after MI have a significant and durable beneficial effect more than 25 weeks after MI and that MSC treatment can home to damaged tissue and improve heart function after intravenous infusion 24-48 hrs after MI, and that WJCs may be a useful source for off-the-shelf cellular therapy for MI

    Control of muscle blood flow during dynamic exercise: muscle contraction / blood flow interactions

    Get PDF
    Doctor of PhilosophyDepartment of Anatomy and PhysiologyThomas J. BarstowThe interaction between dynamic muscle contractions and the associated muscle blood flow is very intriguing leading to questions regarding the net effect of these contractions on oxygen delivery and utilization by the working muscle. Study 1 examined the impact of contractions on muscle blood flow at the level of the femoral artery. We demonstrated that muscle contractions had either a facilitory, neutral, or net impedance effect during upright knee extension exercise as intensity increased from very light to ~70% peak work rate. This led to the question of what impact a change in contraction frequency might have on the coupling of blood flow to metabolic rate during cycling exercise. The blood flow/VO2 relationship has been shown to be linear and robust at both the central (i.e., cardiac output/pulmonary VO2) and peripheral (leg blood flow/leg VO2) levels. However, an increase in contraction frequency has been reported to either decrease, have no effect, or increase the blood flow response during exercise. Study 2 determined if the steady state coupling between muscle blood flow and metabolic rate (centrally and/or peripherally) would be altered by varying contraction frequency. Our results indicate that both central and peripheral blood flow/VO2 relationships are robust and remain tightly coupled regardless of changes in contraction frequency. Study 3 examined muscle microvascular hemoglobin concentration and oxygenation within the contraction/relaxation cycle to determine if microvascular RBC volume was preserved and if oxygen extraction occurred during contractions. We concluded that microvascular RBC volume was preserved during muscle contractions (i.e., RBCs remained in the capillaries), which could facilitate continued oxygen delivery. Further, there was a cyclic pattern of deoxygenation/oxygenation that corresponded with the contraction/relaxation phases of the contraction cycle, with deoxyhemoglobin increasing significantly during the contractile phase. These data suggest that oxygen extraction continues to occur during muscle contractions. Significant insight has been gained on the impact of muscle contractions on oxygen delivery to and exchange in active skeletal muscle. This series of studies forms a base of knowledge that furthers our understanding of the mechanisms which govern the control of skeletal muscle blood flow and its coupling to muscle metabolic rate
    corecore