46 research outputs found

    Increased Epithelial Expression of CTGF and S100A7 with Elevated Subepithelial Expression of IL-1β in Trachomatous Trichiasis.

    Get PDF
    PURPOSE: To characterize the histological appearance and expression of pro-inflammatory mediators, growth factors, matrix metalloproteinases and biomarkers of epithelial-mesenchymal transition (EMT) in healthy control and trachomatous trichiasis (TT) conjunctival tissue. METHODS: Conjunctival biopsies were taken from 20 individuals with TT and from 16 individuals with healthy conjunctiva, which served as controls. Study participants were of varying ethnicity and were living in a trachoma-endemic region of northern Tanzania. Formalin-fixed paraffin-embedded tissue sections were stained using hematoxylin and eosin or by immunohistochemistry using antibodies against: IL-1β, IL-6, IL-17A, IL-22, CXCL5, S100A7, cleaved caspase 1 (CC1), PDGF, CTGF, TGFβ2, MMP7, MMP9, E-cadherin, vimentin, and ιSMA. RESULTS: Tissue from TT cases had a greater inflammatory cell infiltrate relative to controls and greater disruption of collagen structure. CTGF and S100A7 were more highly expressed in the epithelium and IL-1β was more highly expressed in the substantia propria of TT cases relative to controls. Latent TGFβ2 was slightly more abundant in the substantia propria of control tissue. No differences were detected between TT cases and controls in the degree of epithelial atrophy, the number of myofibroblasts or expression of EMT biomarkers. CONCLUSIONS: These data indicate that the innate immune system is active in the immunopathology of trachoma, even in the absence of clinical inflammation. CTGF might provide a direct link between inflammation and fibrosis and could be a suitable target for therapeutic treatment to halt the progression of trachomatous scarring

    Predictive mathematical models for the spread and treatment of hyperoxia-induced photoreceptor degeneration in retinitis pigmentosa

    Get PDF
    Purpose: To determine whether the oxygen toxicity hypothesis can explain the distinctive spatio-temporal patterns of retinal degeneration associated with human retinitis pigmentosa (RP) and to predict the effects of antioxidant and trophic factor treatments under this hypothesis. Methods: Three mathematical models were derived to describe the evolution of the retinal oxygen concentration and photoreceptor density over time. The first model considers only hyperoxia-induced degeneration, while the second and third models include mutation-induced rod and cone loss respectively. The models were formulated as systems of partial differential equations, defined on a two-dimensional domain spanning the region between the foveal center and the ora serrata, and were solved numerically using the finite element method. Results: The mathematical models recapitulate patterns of retinal degeneration which involve preferential loss of photoreceptors in the parafoveal/perifoveal and far-peripheral retina, while those which involve a preferential loss of midperipheral photoreceptors cannot be reproduced. Treatment with antioxidants or trophic factors is predicted to delay, halt, or partially reverse retinal degeneration, depending upon the strength and timing of treatment and disease severity. Conclusions: The model simulations indicate that while the oxygen toxicity hypothesis is sufficient to explain some of the patterns of retinal degeneration observed in human RP, additional mechanisms are necessary to explain the full range of behaviors. The models further suggest that antioxidant and trophic factor treatments have the potential to reduce hyperoxia-induced disease severity and that, where possible, these treatments should be targeted at retinal regions with low photoreceptor density to maximize their efficacy

    Immunohistochemical Analysis of Scarring Trachoma Indicates Infiltration by Natural Killer and Undefined CD45 Negative Cells.

    Get PDF
    INTRODUCTION: The phenotype and function of immune cells infiltrating the conjunctiva in scarring trachoma have yet to be fully characterized. We assessed tissue morphology and immunophenotype of cellular infiltrates found in trachomatous scarring compared to control participants. METHODOLOGY: Clinical assessments and conjunctival biopsy samples were obtained from 34 individuals with trachomatous scarring undergoing trichiasis surgery and 33 control subjects undergoing cataract or retinal detachment surgery. Biopsy samples were fixed in buffered formalin and embedded in paraffin wax. Hematoxylin and eosin (H&E) staining was performed for assessment of the inflammatory cell infiltrate. Immunohistochemical staining of single markers on individual sections was performed to identify cells expressing CD3 (T-cells), CD4 (helper T-cells), CD8 (suppressor/cytotoxic T-cells and Natural Killer, NK, cells), NCR1 (NK cells), CD20 (B-cells), CD45 (nucleated hematopoietic cells), CD56 (NK and T-cells), CD68 (macrophages/monocytes) and CD83 (mature dendritic cells). The degree of scarring was assessed histologically using cross-polarized light to visualize collagen fibres. PRINCIPLE FINDINGS: Scarring, regardless of clinical inflammation, was associated with increased inflammatory cell infiltrates on H&E and CD45 staining. Scarring was also associated with increased CD8+ and CD56+ cells, but not CD3+ cells, suggestive of a NK cell infiltrate. This was supported by the presence of NCR1+ cells. There was some increase in CD20+ cells, but no evidence for increased CD4+, CD68+ or CD83+ cells. Numerous CD45 negative cells were also seen in the population of infiltrating inflammatory cells in scarred conjunctiva. Disorganization of the normal collagen architecture was strongly associated with clinical scarring. CONCLUSIONS/SIGNIFICANCE: These data point to the infiltration of immune cells with a phenotype suggestive of NK cells in conjunctival trachomatous scarring. A large proportion of CD45 negative inflammatory cells were also present. Future work should seek to understand the stimuli leading to the recruitment of these cells and their role in progressive scarring

    Lipoprotein-associated phosphoplipase a2 (lp-pla2) as a therapeutic target to prevent retinal vasopermeability during diabetes

    Get PDF
    Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA(2), darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA(2) and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood–retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA(2) inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA(2) inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA(2) may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents

    Simple and complex retinal dystrophies are associated with profoundly different disease networks

    Get PDF
    Retinopathies are a group of monogenetic or complex retinal diseases associated with high unmet medical need. Monogenic disorders are caused by rare genetic variation and usually arise early in life. Other diseases, such as age-related macular degeneration (AMD), develop late in life and are considered to be of complex origin as they develop from a combination of genetic, ageing, environmental and lifestyle risk factors. Here, we contrast the underlying disease networks and pathological mechanisms of monogenic as opposed to complex retinopathies, using AMD as an example of the latter. We show that, surprisingly, genes associated with the different forms of retinopathies in general do not overlap despite their overlapping retinal phenotypes. Further, AMD risk genes participate in multiple networks with interaction partners that link to different ubiquitous pathways affecting general tissue integrity and homeostasis. Thus AMD most likely represents an endophenotype with differing underlying pathogenesis in different subjects. Localising these pathomechanisms and processes within and across different retinal anatomical compartments provides a novel representation of AMD that may be extended to complex disease in general. This approach may generate improved treatment options that target multiple processes with the aim of restoring tissue homeostasis and maintaining vision

    Retinal haemorrhages in infant head injury

    No full text

    Simple and complex retinal dystrophies are associated with profoundly different disease networks

    No full text
    Retinopathies are a group of monogenetic or complex retinal diseases associated with high unmet medical need. Monogenic disorders are caused by rare genetic variation and usually arise early in life. Other diseases, such as age-related macular degeneration (AMD), develop late in life and are considered to be of complex origin as they develop from a combination of genetic, ageing, environmental and lifestyle risk factors. Here, we contrast the underlying disease networks and pathological mechanisms of monogenic as opposed to complex retinopathies, using AMD as an example of the latter. We show that, surprisingly, genes associated with the different forms of retinopathies in general do not overlap despite their overlapping retinal phenotypes. Further, AMD risk genes participate in multiple networks with interaction partners that link to different ubiquitous pathways affecting general tissue integrity and homeostasis. Thus AMD most likely represents an endophenotype with differing underlying pathogenesis in different subjects. Localising these pathomechanisms and processes within and across different retinal anatomical compartments provides a novel representation of AMD that may be extended to complex disease in general. This approach may generate improved treatment options that target multiple processes with the aim of restoring tissue homeostasis and maintaining vision.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 634479 (EYE-RISK). This work was supported by the Spanish Ministerio de Economía y Competitividad, Plan Nacional BIO2012-39754 and the European Fund for Regional Development. We acknowledge the support of the Spanish Ministry of Economy and Competitiveness, 'Centro de Excelencia Severo Ochoa 2013-2017′. We acknowledge the support of the CERCA Programme/Generalitat de Catalunya

    Simple and complex retinal dystrophies are associated with profoundly different disease networks

    No full text
    Retinopathies are a group of monogenetic or complex retinal diseases associated with high unmet medical need. Monogenic disorders are caused by rare genetic variation and usually arise early in life. Other diseases, such as age-related macular degeneration (AMD), develop late in life and are considered to be of complex origin as they develop from a combination of genetic, ageing, environmental and lifestyle risk factors. Here, we contrast the underlying disease networks and pathological mechanisms of monogenic as opposed to complex retinopathies, using AMD as an example of the latter. We show that, surprisingly, genes associated with the different forms of retinopathies in general do not overlap despite their overlapping retinal phenotypes. Further, AMD risk genes participate in multiple networks with interaction partners that link to different ubiquitous pathways affecting general tissue integrity and homeostasis. Thus AMD most likely represents an endophenotype with differing underlying pathogenesis in different subjects. Localising these pathomechanisms and processes within and across different retinal anatomical compartments provides a novel representation of AMD that may be extended to complex disease in general. This approach may generate improved treatment options that target multiple processes with the aim of restoring tissue homeostasis and maintaining vision.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 634479 (EYE-RISK). This work was supported by the Spanish Ministerio de Economía y Competitividad, Plan Nacional BIO2012-39754 and the European Fund for Regional Development. We acknowledge the support of the Spanish Ministry of Economy and Competitiveness, 'Centro de Excelencia Severo Ochoa 2013-2017′. We acknowledge the support of the CERCA Programme/Generalitat de Catalunya

    Analysis of Ras-effector interaction competition in large intestine and colorectal cancer context

    Get PDF
    Cancer is the second leading cause of death globally, and colorectal cancer (CRC) is among the five most common cancers. The small GTPase KRAS is an oncogene that is mutated in ~30% of all CRCs. Pharmacological treatments of CRC are currently unsatisfactory, but much hope rests on network-centric approaches to drug development and cancer treatment. These approaches, however, require a better understanding of how networks downstream of Ras oncoproteins are connected in a particular tissue context–here colon and CRC. Previously we have shown that competition for binding to a ‘hub’ protein, such as Ras, can induce a rewiring of signal transduction networks. In this study, we analysed 56 established and predicted effectors that contain a structural domain with the potential ability to bind to Ras oncoproteins and their link to pathways coordinating intestinal homoeostasis and barrier function. Using protein concentrations in colon tissue and Ras-effector binding affinities, a computational network model was generated that predicted how effectors differentially and competitively bind to Ras in colon context. The model also predicted both qualitative and quantitative changes in Ras-effector complex formations with increased levels of active Ras–to simulate its upregulation in cancer–simply as an emergent property of competition for the same binding interface on the surface of Ras. We also considered how the number of Ras-effector complexes at the membrane can be increased by additional domains present in some effectors that are recruited to the membrane in response to specific conditions (inputs/stimuli/growth factors) in colon context and CRC.Science Foundation Irelan
    corecore