105 research outputs found

    The maize rachis affects Aspergillus flavus spread during ear development

    Get PDF
    Aspergillus flavus that transgenically expressed the green fluorescent protein was used to follow infection in ears of maize hybrids resistant and susceptible to the fungus. Developing ears were needle-inoculated with GFP- transformed A. flavus 20 days after silk emergence, and GFP fluorescence in the pith was evaluated at 1, 2, 3, 4, 5, 10, and 20 days after inoculation. Fluorescence levels in the pith of susceptible lines were significantly higher (P < 0.0001) than in resistant lines at all time points. Pith sections apical to the inoculation point displayed higher fluorescence levels compared to other sections of the ear, suggesting fungal spread via the water/nutrient transport system. Fluorescence levels in resistant lines did not change significantly over time, implying spread of the fungus but not growth. Fluorescence in susceptible ears was highest at early time points, suggesting that conditions were more conducive to spread than at the later time points. These results suggest that the rachis could retard the spread and/or growth of the fungus inside the developing maize ear. Although fluorescence was observed in kernels from resistant ears, it occurred at a much higher frequency in those from susceptible hybrids. Together, these results suggest that the rachis is used by maize as a defense structure similar to other preformed types of resistance

    Intraplant communication in maize contributes to defense against insects

    Get PDF
    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Furthermore, accumulation of Mir1-CP in the vasculature suggests that Mir1-CP can potentially function as a phloemmobile protein. In a recent study, we provided evidence that Mir1-CP can curtail the growth of phloemsap sucking insect, corn leaf aphid (CLA; Rhopalosiphum maidis). Our current study further examined whether aboveground feeding by CLA can induce resistance to subsequent herbivory by belowground feeding western corn rootworm (WCR; Diabrotica virgifera virgifera). Aboveground feeding by CLA systemically induced the accumulation of Mir1-CP in the roots. Furthermore, foliage feeding by CLA provided enhanced resistance to subsequent herbivory by below ground feeding of WCR. Taken together, our previous findings and results presented here indicate that long-distance transport of Mir1-CP is critical for providing enhanced resistance to insect attack in maize

    Intraplant communication in maize contributes to defense against insects

    Get PDF
    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Furthermore, accumulation of Mir1-CP in the vasculature suggests that Mir1-CP can potentially function as a phloemmobile protein. In a recent study, we provided evidence that Mir1-CP can curtail the growth of phloemsap sucking insect, corn leaf aphid (CLA; Rhopalosiphum maidis). Our current study further examined whether aboveground feeding by CLA can induce resistance to subsequent herbivory by belowground feeding western corn rootworm (WCR; Diabrotica virgifera virgifera). Aboveground feeding by CLA systemically induced the accumulation of Mir1-CP in the roots. Furthermore, foliage feeding by CLA provided enhanced resistance to subsequent herbivory by below ground feeding of WCR. Taken together, our previous findings and results presented here indicate that long-distance transport of Mir1-CP is critical for providing enhanced resistance to insect attack in maize

    Effect of glyphosate on lipoxygenase of cowpea seed

    Get PDF
    Foi obtida, com solução de CaCl2 a 0,68 mM e pH 7,5, a atividade máxima de lipoxigenase em sementes de caupi (Vigna unguiculata (L.) Walp). Foram analisadas sementes durante a germinação, e observou-se que a atividade específica de lipoxigenase diminuiu durante o processo. Sementes de plantas tratadas com o herbicida glifosato (N - (fosfonometil) glicina) como dessecante mostraram significante aumento da atividade específica de lipoxigenase. Isto pode ser resultado do efeito do herbicida nas plantas. Tal conclusão é baseada no fato de que a. a lipoxigenase, que teve sua atividade específica aumentada pelo glifosato, pode promover a formação do ácido 12-oxo-fitodienóico; b. este, por sua vez, é um possível precursor do ácido jasmônico, um regulador de crescimento que promove senescência em plantas, explicando-se, desta maneira, a ação do herbicida nelas. Pelo método utilizado, não foi encontrada a enzima em folhas ou outras partes verdes das plantas. The predominant cowpea seed lipoxygenase was optimally activated by calcium at 0.68 mM and at pH 7.5. Seeds were analyzed during germinaton and showed a decrease in lipoxygenase specific activity with time. Seeds from plants treated with the herbicide glyphosate (N - (phosphonomethyl) glycine) showed a significant increase in lipoxygenase content. This could have been a result of senescence, or the effects of the herbicide on those plants. Such a conclusion is basead on findings that a. lipoxygenase, the activity of which was enhanced by glyphosate, has been reported to promote formation of 12-oxo-phytodienoic acid, and b. 12-oxo-phytodienoic acid has been proposed to be a precursor of jasmonic acid, a growth regulator which promotes senescence of plants. With the assay technique utilized, no lipoxygenase was found in mature leaves.

    AgBase: a unified resource for functional analysis in agriculture

    Get PDF
    Analysis of functional genomics (transcriptomics and proteomics) datasets is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation. To facilitate systems biology in these species we have established the curated, web-accessible, public resource ‘AgBase’ (). We have improved the structural annotation of agriculturally important genomes by experimentally confirming the in vivo expression of electronically predicted proteins and by proteogenomic mapping. Proteogenomic data are available from the AgBase proteogenomics link. We contribute Gene Ontology (GO) annotations and we provide a two tier system of GO annotations for users. The ‘GO Consortium’ gene association file contains the most rigorous GO annotations based solely on experimental data. The ‘Community’ gene association file contains GO annotations based on expert community knowledge (annotations based directly from author statements and submitted annotations from the community) and annotations for predicted proteins. We have developed two tools for proteomics analysis and these are freely available on request. A suite of tools for analyzing functional genomics datasets using the GO is available online at the AgBase site. We encourage and publicly acknowledge GO annotations from researchers and provide an online mechanism for agricultural researchers to submit requests for GO annotations

    OPDA regulates maize defense against aphids

    Get PDF
    Copyright © 2019 American Society of Plant Biologists. DOI:10.1104/pp.18.0147

    AgBase: a functional genomics resource for agriculture

    Get PDF
    BACKGROUND: Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural research communities are smaller with limited funding compared to many model organism communities. DESCRIPTION: To facilitate systems biology in these traditionally agricultural species we have established "AgBase", a curated, web-accessible, public resource for structural and functional annotation of agricultural genomes. The AgBase database includes a suite of computational tools to use GO annotations. We use standardized nomenclature following the Human Genome Organization Gene Nomenclature guidelines and are currently functionally annotating chicken, cow and sheep gene products using the Gene Ontology (GO). The computational tools we have developed accept and batch process data derived from different public databases (with different accession codes), return all existing GO annotations, provide a list of products without GO annotation, identify potential orthologs, model functional genomics data using GO and assist proteomics analysis of ESTs and EST assemblies. Our journal database helps prevent redundant manual GO curation. We encourage and publicly acknowledge GO annotations from researchers and provide a service for researchers interested in GO and analysis of functional genomics data. CONCLUSION: The AgBase database is the first database dedicated to functional genomics and systems biology analysis for agriculturally important species and their pathogens. We use experimental data to improve structural annotation of genomes and to functionally characterize gene products. AgBase is also directly relevant for researchers in fields as diverse as agricultural production, cancer biology, biopharmaceuticals, human health and evolutionary biology. Moreover, the experimental methods and bioinformatics tools we provide are widely applicable to many other species including model organisms

    A Naturally Occurring Plant Cysteine Protease Possesses Remarkable Toxicity against Insect Pests and Synergizes Bacillus thuringiensis Toxin

    Get PDF
    When caterpillars feed on maize (Zea maize L.) lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM), a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC50 values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins

    Insect Eggs Can Enhance Wound Response in Plants: A Study System of Tomato Solanum lycopersicum L. and Helicoverpa zea Boddie

    Get PDF
    Insect oviposition on plants frequently precedes herbivory. Accumulating evidence indicates that plants recognize insect oviposition and elicit direct or indirect defenses to reduce the pressure of future herbivory. Most of the oviposition-triggered plant defenses described thus far remove eggs or keep them away from the host plant or their desirable feeding sites. Here, we report induction of antiherbivore defense by insect oviposition which targets newly hatched larvae, not the eggs, in the system of tomato Solanum lycopersicum L., and tomato fruitworm moth Helicoverpa zea Boddie. When tomato plants were oviposited by H. zea moths, pin2, a highly inducible gene encoding protease inhibitor2, which is a representative defense protein against herbivorous arthropods, was expressed at significantly higher level at the oviposition site than surrounding tissues, and expression decreased with distance away from the site of oviposition. Moreover, more eggs resulted in higher pin2 expression in leaves, and both fertilized and unfertilized eggs induced pin2 expression. Notably, when quantified daily following deposition of eggs, pin2 expression at the oviposition site was highest just before the emergence of larvae. Furthermore, H. zea oviposition primed the wound-induced increase of pin2 transcription and a burst of jasmonic acid (JA); tomato plants previously exposed to H. zea oviposition showed significantly stronger induction of pin2 and higher production of JA upon subsequent simulated herbivory than without oviposition. Our results suggest that tomato plants recognize H. zea oviposition as a signal of impending future herbivory and induce defenses to prepare for this herbivory by newly hatched neonate larvae

    Salivary Glucose Oxidase from Caterpillars Mediates the Induction of Rapid and Delayed-Induced Defenses in the Tomato Plant

    Get PDF
    Caterpillars produce oral secretions that may serve as cues to elicit plant defenses, but in other cases these secretions have been shown to suppress plant defenses. Ongoing work in our laboratory has focused on the salivary secretions of the tomato fruitworm, Helicoverpa zea. In previous studies we have shown that saliva and its principal component glucose oxidase acts as an effector by suppressing defenses in tobacco. In this current study, we report that saliva elicits a burst of jasmonic acid (JA) and the induction of late responding defense genes such as proteinase inhibitor 2 (Pin2). Transcripts encoding early response genes associated with the JA pathway were not affected by saliva. We also observed a delayed response to saliva with increased densities of Type VI glandular trichomes in newly emerged leaves. Proteomic analysis of saliva revealed glucose oxidase (GOX) was the most abundant protein identified and we confirmed that it plays a primary role in the induction of defenses in tomato. These results suggest that the recognition of GOX in tomato may represent a case for effector-triggered immunity. Examination of saliva from other caterpillar species indicates that saliva from the noctuids Spodoptera exigua and Heliothis virescens also induced Pin2 transcripts
    • …
    corecore