46 research outputs found
Seeing Double at Neptune's South Pole
Keck near-infrared images of Neptune from UT 26 July 2007 show that the cloud
feature typically observed within a few degrees of Neptune's south pole had
split into a pair of bright spots. A careful determination of disk center
places the cloud centers at -89.07 +/- 0 .06 and -87.84 +/- 0.06 degrees
planetocentric latitude. If modeled as optically thick, perfectly reflecting
layers, we find the pair of features to be constrained to the troposphere, at
pressures greater than 0.4 bar. By UT 28 July 2007, images with comparable
resolution reveal only a single feature near the south pole. The changing
morphology of these circumpolar clouds suggests they may form in a region of
strong convection surrounding a Neptunian south polar vortex.Comment: 10 pages, 7 figures; accepted to Icaru
Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions
We present and analyze three-dimensional data cubes of Neptune from the
OSIRIS integral-field spectrograph on the 10-m Keck telescope, from July 2009.
These data have a spatial resolution of 0.035"/pixel and spectral resolution of
R~3800 in the H and K broad bands. We focus our analysis on regions of
Neptune's atmosphere that are near-infrared dark- that is, free of discrete
bright cloud features. We use a forward model coupled to a Markov chain Monte
Carlo algorithm to retrieve properties of Neptune's aerosol structure and
methane profile above ~4 bar in these near-infrared dark regions.
Using a set of high signal-to-noise spectra in a cloud-free band from 2-12N,
we find that Neptune's cloud opacity is dominated by a compact, optically thick
cloud layer with a base near 3 bar and composed of low albedo, forward
scattering particles, with an assumed characteristic size of ~1m. Above
this cloud, we require a vertically extended haze of smaller (~0.1 m)
particles, which reaches from the upper troposphere (~0.6 bar) into the
stratosphere. The particles in this haze are brighter and more isotropically
scattering than those in the deep cloud. When we extend our analysis to 18
cloud-free locations from 20N to 87S, we observe that the optical depth in
aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and
high-southern latitudes relative to low latitudes.
We also consider Neptune's methane (CH) profile, and find that our
retrievals indicate a strong preference for a low methane relative humidity at
pressures where methane is expected to condense. Our preferred solution at most
locations is for a methane relative humidity below 10% near the tropopause in
addition to methane depletion down to 2.0-2.5 bar. We tentatively identify a
trend of lower CH columns above 2.5 bar at mid- and high-southern latitudes
over low latitudes.Comment: Published in Icarus: 15 September 201
Analysis of Neptune's 2017 Bright Equatorial Storm
We report the discovery of a large (8500 km diameter) infrared-bright
storm at Neptune's equator in June 2017. We tracked the storm over a period of
7 months with high-cadence infrared snapshot imaging, carried out on 14 nights
at the 10 meter Keck II telescope and 17 nights at the Shane 120 inch reflector
at Lick Observatory. The cloud feature was larger and more persistent than any
equatorial clouds seen before on Neptune, remaining intermittently active from
at least 10 June to 31 December 2017. Our Keck and Lick observations were
augmented by very high-cadence images from the amateur community, which
permitted the determination of accurate drift rates for the cloud feature. Its
zonal drift speed was variable from 10 June to at least 25 July, but remained a
constant m s from 30 September until at least 15
November. The pressure of the cloud top was determined from radiative transfer
calculations to be 0.3-0.6 bar; this value remained constant over the course of
the observations. Multiple cloud break-up events, in which a bright cloud band
wrapped around Neptune's equator, were observed over the course of our
observations. No "dark spot" vortices were seen near the equator in HST imaging
on 6 and 7 October. The size and pressure of the storm are consistent with
moist convection or a planetary-scale wave as the energy source of convective
upwelling, but more modeling is required to determine the driver of this
equatorial disturbance as well as the triggers for and dynamics of the observed
cloud break-up events.Comment: 42 pages, 14 figures, 6 tables; Accepted to Icaru
Direct spectrum of the benchmark t dwarf HD 19467 B
This is the final version of the article. Available from the American Astronomical Society / IOP Publishing via the DOI in this record.HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature Teff = 978+20 -43 K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.The TrenDS high-contrast imaging program is supported by NASA Origins of Solar Systems grant NNX13AB03G and the NASA Early Career Fellowship program. A portion of this work was supported by the National Science Foundation under Grant Numbers AST-0215793, 0334916, 0520822, 0804417 and 1245018. This work was partially supported by NASA ADAP grant 11-ADAP11-0169 and NSF award AST 1211568. A portion of the research in this Letter was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J.A. is supported by the National Physical Science Consortium. This research has benefitted from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser.1
No phosphine in the atmosphere of Venus
The detection of phosphine (PH₃) has been recently reported in the atmosphere of Venus employing mm-wave radio observations (Greaves et at. 2020). We here demonstrate that the observed PH₃ feature with JCMT can be fully explained employing plausible mesospheric SO₂ abundances (~100 ppbv as per the SO₂ profile given in their figure 9), while the identification of PH₃ in the ALMA data should be considered invalid due to severe baseline calibration issues. We demonstrate this by independently calibrating and analyzing the ALMA data using different interferometric analysis tools, in which we observe no PH₃ in all cases. Furthermore, for any PH₃ signature to be produced in either ALMA or JCMT spectra, PH₃ needs to present at altitudes above 70 km, in stark disagreement with their photochemical network. We ultimately conclude that this detection of PH₃ in the atmosphere of Venus is not supported by our analysis of the data
Project 1640 Observations of Brown Dwarf GJ 758 B: Near-infrared Spectrum and Atmospheric Modeling
The nearby Sun-like star GJ 758 hosts a cold substellar companion, GJ 758 B,
at a projected separation of 30 AU, previously detected in
high-contrast multi-band photometric observations. In order to better constrain
the companion's physical characteristics, we acquired the first low-resolution
() near-infrared spectrum of it using the high-contrast
hyperspectral imaging instrument Project 1640 on Palomar Observatory's 5-m Hale
telescope. We obtained simultaneous images in 32 wavelength channels covering
the , , and bands (952-1770 nm), and used data processing
techniques based on principal component analysis to efficiently subtract
chromatic background speckle-noise. GJ 758 B was detected in four epochs during
2013 and 2014. Basic astrometric measurements confirm its apparent northwest
trajectory relative to the primary star, with no clear signs of orbital
curvature. Spectra of SpeX/IRTF observed T dwarfs were compared to the combined
spectrum of GJ 758 B, with minimization suggesting a best fit for
spectral type T7.01.0, but with a shallow minimum over T5-T8. Fitting of
synthetic spectra from the BT-Settl13 model atmospheres gives an effective
temperature K and surface gravity dex (cgs). Our derived best-fit spectral type and effective temperature
from modeling of the low-resolution spectrum suggest a slightly earlier and
hotter companion than previous findings from photometric data, but do not rule
out current results, and confirm GJ 758 B as one of the coolest sub-stellar
companions to a Sun-like star to date
Project 1640 observations of the white dwarf HD 114174 B
We present the rst near infra-red spectrum of the faint white dwarf companion HD
114174 B, obtained with Project 1640. Our spectrum, covering the Y, J and H bands,
combined with previous TRENDS photometry measurements, allows us to place fur-
ther constraints on this companion. We suggest two possible scenarios; either this ob-
ject is an old, low mass, cool H atmosphere white dwarf with Te 3800 K or a high
mass white dwarf with Te > 6000 K, potentially with an associated cool (Te 700
K) brown dwarf or debris disk resulting in an infra-red excess in the L0 band. We
also provide an additional astrometry point for 2014 June 12 and use the modelled
companion mass combined with the RV and direct imaging data to place constraints
on the orbital parameters for this companion