212 research outputs found

    Vaccination with novel low-molecular weight proteins secreted from Trichinella spiralis inhibits establishment of infection

    Get PDF
    Trichinella spiralis muscle stage larvae (mL1) produce excretory-secreted products (ESPs), a complex mixture of protein, which are believed to be important for establishing or maintaining an infection niche within skeletal muscle and the intestine. Studies of both whole ESPs and individual cloned proteins have shown that some ESPs are potent immunogens capable of eliciting protective immune responses. Here we describe two novel proteins, Secreted from Muscle stage Larvae SML-4 and SML-5 which are 15 kDa and 12 kDa respectively. The genes encoding these proteins are highly conserved within the Trichinellids, are constituents of mL1 ESP and localized in the parasite stichosome. While SML-5 is only expressed in mL1 and early stages of adult nematode development, SML-4 is a tyvosylated glycoprotein also produced by adult nematodes, indicating it may have a function in the enteral phase of the infection. Vaccination with these proteins resulted in an impaired establishment of adult stages and consequently a reduction in the burden of mL1 in BALB/c mice. This suggests that both proteins may be important for establishment of parasite infection of the intestine and are prophylactic vaccine candidates

    Potential involvement of Brugia malayi cysteine proteases in the maintenance of the endosymbiotic relationship with Wolbachia

    Get PDF
    Brugia malayi, a parasitic nematode that causes lymphatic filariasis, harbors endosymbiotic intracellular bacteria, Wolbachia, that are required for the development and reproduction of the worm. The essential nature of this endosymbiosis led to the development of anti- Wolbachia chemotherapeutic approaches for the treatment of human filarial infections. Our study is aimed at identifying specific proteins that play a critical role in this endosymbiotic relationship leading to the identification of potential targets in the adult worms. Filarial cysteine proteases are known to be involved in molting and embryogenesis, processes shown to also be Wolbachia dependent. Based on the observation that cysteine protease transcripts are differentially regulated in response to tetracycline treatment, we focused on defining their role in symbiosis. We observe a bimodal regulation pattern of transcripts encoding cysteine proteases when in vitro tetracycline treated worms were examined. Using tetracycline-treated infertile female worms and purified embryos we established that the first peak of the bimodal pattern corresponds to embryonic transcripts while the second takes place within the hypodermis of the adult worms. Localization studies of the native proteins corresponding to Bm-cpl-3 and Bm-cpl-6 indicate that they are present in the area surrounding Wolbachia, and, in some cases, the proteins appear localized within the bacteria. Both proteins were also found in the inner bodies of microfilariae. The possible role of these cysteine proteases during development and endosymbiosis was further characterized using RNAi. Reduction in Bm-cpl-3 and Bm-cpl-6 transcript levels was accompanied by hindered microfilarial development and release, and reduced Wolbachia DNA levels, making these enzymes strong drug target candidates

    A Research Agenda for Helminth Diseases of Humans: Health Research and Capacity Building in Disease-Endemic Countries for Helminthiases Control

    Get PDF
    Capacity building in health research generally, and helminthiasis research particularly, is pivotal to the implementation of the research and development agenda for the control and elimination of human helminthiases that has been proposed thematically in the preceding reviews of this collection. Since helminth infections affect human populations particularly in marginalised and low-income regions of the world, they belong to the group of poverty-related infectious diseases, and their alleviation through research, policy, and practice is a sine qua non condition for the achievement of the United Nations Millennium Development Goals. Current efforts supporting research capacity building specifically for the control of helminthiases have been devised and funded, almost in their entirety, by international donor agencies, major funding bodies, and academic institutions from the developed world, contributing to the creation of (not always equitable) North–South “partnerships”. There is an urgent need to shift this paradigm in disease-endemic countries (DECs) by refocusing political will, and harnessing unshakeable commitment by the countries' governments, towards health research and capacity building policies to ensure long-term investment in combating and sustaining the control and eventual elimination of infectious diseases of poverty. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. This paper discusses the challenges confronting capacity building for parasitic disease research in DECs, describes current capacity building strategies with particular reference to neglected tropical diseases and human helminthiases, and outlines recommendations to redress the balance of alliances and partnerships for health research between the developed countries of the “North” and the developing countries of the “South”. We argue that investing in South–South collaborative research policies and capacity is as important as their North–South counterparts and is essential for scaled-up and improved control of helminthic diseases and ultimately for regional elimination

    Functional Analysis of the Cathepsin-Like Cysteine Protease Genes in Adult Brugia malayi Using RNA Interference

    Get PDF
    Filarial nematodes are an important group of human pathogens, causing lymphatic filariasis and onchocerciasis, and infecting around 150 million people throughout the tropics with more than 1.5 billion at risk of infection. Control of filariasis currently relies on mass drug administration (MDA) programs using drugs which principally target the microfilarial life-cycle stage. These control programs are facing major challenges, including the absence of a drug with macrofilaricidal or permanent sterilizing activity, and the possibility of the development of drug-resistance against the drugs available. Cysteine proteases are essential enzymes which play important roles in a wide range of cellular processes, and the cathepsin-like cysteine proteases have been identified as potential targets for drug or vaccine development in many parasites. Here we have studied the function of several of the cathepsin-like enzymes in the filarial nematode, B. malayi, and demonstrate that these cysteine proteases are involved in the development of embryos, show similar functions to their counterparts in C. elegans, and therefore, provide an important target for future drug development targeted to eliminate filariasis

    Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming

    Get PDF
    BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information

    Immunisation with a Multivalent, Subunit Vaccine Reduces Patent Infection in a Natural Bovine Model of Onchocerciasis during Intense Field Exposure

    Get PDF
    Human onchocerciasis, caused by the filarial nematode Onchocerca volvulus, is controlled almost exclusively by the drug ivermectin, which prevents pathology by targeting the microfilariae. However, this reliance on a single control tool has led to interest in vaccination as a potentially complementary strategy. Here, we describe the results of a trial in West Africa to evaluate a multivalent, subunit vaccine for onchocerciasis in the naturally evolved host-parasite relationship of Onchocerca ochengi in cattle. Naïve calves, reared in fly-proof accommodation, were immunised with eight recombinant antigens of O. ochengi, administered separately with either Freund's adjuvant or alum. The selected antigens were orthologues of O. volvulus recombinant proteins that had previously been shown to confer protection against filarial larvae in rodent models and, in some cases, were recognised by serum antibodies from putatively immune humans. The vaccine was highly immunogenic, eliciting a mixed IgG isotype response. Four weeks after the final immunisation, vaccinated and adjuvant-treated control calves were exposed to natural parasite transmission by the blackfly vectors in an area of Cameroon hyperendemic for O. ochengi. After 22 months, all the control animals had patent infections (i.e., microfilaridermia), compared with only 58% of vaccinated cattle (P = 0.015). This study indicates that vaccination to prevent patent infection may be an achievable goal in onchocerciasis, reducing both the pathology and transmissibility of the infection. The cattle model has also demonstrated its utility for preclinical vaccine discovery, although much research will be required to achieve the requisite target product profile of a clinical candidate

    Elimination of Schistosomiasis Transmission in Zanzibar: Baseline Findings before the Onset of a Randomized Intervention Trial.

    Get PDF
    Gaining and sustaining control of schistosomiasis and, whenever feasible, achieving local elimination are the year 2020 targets set by the World Health Organization. In Zanzibar, various institutions and stakeholders have joined forces to eliminate urogenital schistosomiasis within 5 years. We report baseline findings before the onset of a randomized intervention trial designed to assess the differential impact of community-based praziquantel administration, snail control, and behavior change interventions. In early 2012, a baseline parasitological survey was conducted in ∼20,000 people from 90 communities in Unguja and Pemba. Risk factors for schistosomiasis were assessed by administering a questionnaire to adults. In selected communities, local knowledge about schistosomiasis transmission and prevention was determined in focus group discussions and in-depths interviews. Intermediate host snails were collected and examined for shedding of cercariae. The baseline Schistosoma haematobium prevalence in school children and adults was 4.3% (range: 0-19.7%) and 2.7% (range: 0-26.5%) in Unguja, and 8.9% (range: 0-31.8%) and 5.5% (range: 0-23.4%) in Pemba, respectively. Heavy infections were detected in 15.1% and 35.6% of the positive school children in Unguja and Pemba, respectively. Males were at higher risk than females (odds ratio (OR): 1.45; 95% confidence interval (CI): 1.03-2.03). Decreasing adult age (OR: 1.04; CI: 1.02-1.06), being born in Pemba (OR: 1.48; CI: 1.02-2.13) or Tanzania (OR: 2.36; CI: 1.16-4.78), and use of freshwater (OR: 2.15; CI: 1.53-3.03) showed higher odds of infection. Community knowledge about schistosomiasis was low. Only few infected Bulinus snails were found. The relatively low S. haematobium prevalence in Zanzibar is a promising starting point for elimination. However, there is a need to improve community knowledge about disease transmission and prevention. Control measures tailored to the local context, placing particular attention to hot-spot areas, high-risk groups, and individuals, will be necessary if elimination is to be achieved

    A Four-Antigen Mixture for Rapid Assessment of Onchocerca volvulus Infection

    Get PDF
    Caused by the filarial parasite Onchocerca volvulus, onchocerciasis is a neglected tropical disease associated with blindness and severe dermatitis. Available diagnostic methods are either invasive, require hours or days to perform, and/or need sophisticated equipment to be conducted. Thus, there is an urgent need for simple and rapid technologies for the specific diagnosis of Onchocerca volvulus infection. Here we investigated whether luciferase immunoprecipitation systems (LIPS) can produce a more rapid and specific test for diagnosis of O. volvulus infection. Using modified versions of previously identified Onchocerca-specific antigens, LIPS tests detected antibodies to all four O. volvulus antigens and easily distinguished the O. volvulus-infected samples from uninfected samples. We also tested these four different antigens in a simpler format as a combined mixture and distinguished 100% of the confirmed cases from the uninfected controls. A rapid 15-minute version of this mixture test (QLIPS) also allowed distinction of 100% of the cases from those uninfected and performed even better in identifying Onchocerca from other cross-reactive parasitic infections. This study suggests that this rapid LIPS test (QLIPS) has the potential to be used in point-of-care detection of onchocerciasis and thereby may provide a new tool for diagnosis and the monitoring of transmission control measures

    A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination

    Get PDF
    Human helminthiases are of considerable public health importance in sub-Saharan Africa, Asia, and Latin America. The acknowledgement of the disease burden due to helminth infections, the availability of donated or affordable drugs that are mostly safe and moderately efficacious, and the implementation of viable mass drug administration (MDA) interventions have prompted the establishment of various large-scale control and elimination programmes. These programmes have benefited from improved epidemiological mapping of the infections, better understanding of the scope and limitations of currently available diagnostics and of the relationship between infection and morbidity, feasibility of community-directed or school-based interventions, and advances in the design of monitoring and evaluation (M&E) protocols. Considerable success has been achieved in reducing morbidity or suppressing transmission in a number of settings, whilst challenges remain in many others. Some of the obstacles include the lack of diagnostic tools appropriate to the changing requirements of ongoing interventions and elimination settings; the reliance on a handful of drugs about which not enough is known regarding modes of action, modes of resistance, and optimal dosage singly or in combination; the difficulties in sustaining adequate coverage and compliance in prolonged and/or integrated programmes; an incomplete understanding of the social, behavioural, and environmental determinants of infection; and last, but not least, very little investment in research and development (R&D). The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to undertake a comprehensive review of recent advances in helminthiases research, identify research gaps, and rank priorities for an R&D agenda for the control and elimination of these infections. This review presents the processes undertaken to identify and rank ten top research priorities; discusses the implications of realising these priorities in terms of their potential for improving global health and achieving the Millennium Development Goals (MDGs); outlines salient research funding needs; and introduces the series of reviews that follow in this PLoS Neglected Tropical Diseases collection, “A Research Agenda for Helminth Diseases of Humans.
    corecore