275 research outputs found
Numerical modeling of fiber pull-out micromechanics in concrete matrix composites
The presented research work compares numerical results of single fiber pull-out of elastic matrix with the experimental data obtained for single steel fiber pulled out of highstrength concrete matrix. The pull-out process was studied by means of accurate 2D elastic and 3D elasto-plastic finite element models taking into account the nonlinearity. Numerical modeling was performed for straight-shaped fiber embedded into the elastic matrix under variable angle with respect to applied pulling force and at variable depth. Friction between fiber and matrix, matrix shrinkage as well as elastic and plastic deformations in the fiber were taken into account. The objective of numerical modeling was to evaluate significance of different phenomena such as friction between steel fiber and concrete matrix, matrix shrinkage and fiber plasticity in a single fiber pull-out process by taking into consideration experimental findings
Recommended from our members
Heparin-binding EGF-like growth factor (HB-EGF) antisense oligonucleotide protected against hyperlipidemia-associated atherosclerosis.
BACKGROUND AND AIMS: Heparin-binding EGF-like growth factor (HB-EGF) is a representative EGF family member that interacts with EGFR under diverse stress environment. Previously, we reported that the HB-EGF-targeting using antisense oligonucleotide (ASO) effectively suppressed an aortic aneurysm in the vessel wall and circulatory lipid levels. In this study, we further examined the effects of the HB-EGF ASO administration on the development of hyperlipidemia-associated atherosclerosis using an atherogenic mouse model. METHODS AND RESULTS: The male and female LDLR deficient mice under Western diet containing 21% fat and 0.2% cholesterol content were cotreated with control and HB-EGF ASOs for 12 weeks. We observed that the HB-EGF ASO administration effectively downregulated circulatory VLDL- and LDL-associated lipid levels in circulation; concordantly, the HB-EGF targeting effectively suppressed the development of atherosclerosis in the aorta. An EGFR blocker BIBX1382 administration suppressed the hepatic TG secretion rate, suggesting a positive role of the HB-EGF signaling for the hepatic VLDL production. We newly observed that there was a significant improvement of the insulin sensitivity by the HB-EGF ASO administration in a mouse model under the Western diet as demonstrated by the improvement of the glucose and insulin tolerances. CONCLUSION: The HB-EGF ASO administration effectively downregulated circulatory lipid levels by suppressing hepatic VLDL production rate, which leads to effective protection against atherosclerosis in the vascular wall
Network-Based Approach for Modeling and Analyzing Coronary Angiography
Significant intra-observer and inter-observer variability in the
interpretation of coronary angiograms are reported. This variability is in part
due to the common practices that rely on performing visual inspections by
specialists (e.g., the thickness of coronaries). Quantitative Coronary
Angiography (QCA) approaches are emerging to minimize observer's error and
furthermore perform predictions and analysis on angiography images. However,
QCA approaches suffer from the same problem as they mainly rely on performing
visual inspections by utilizing image processing techniques.
In this work, we propose an approach to model and analyze the entire
cardiovascular tree as a complex network derived from coronary angiography
images. This approach enables to analyze the graph structure of coronary
arteries. We conduct the assessments of network integration, degree
distribution, and controllability on a healthy and a diseased coronary
angiogram. Through our discussion and assessments, we propose modeling the
cardiovascular system as a complex network is an essential phase to fully
automate the interpretation of coronary angiographic images. We show how
network science can provide a new perspective to look at coronary angiograms
Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism
<p>Abstract</p> <p>Background</p> <p>Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH) with those from healthy individuals.</p> <p>Methods</p> <p>Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p < 0.05; Benjamini Hochberg correction, False Discovery Rate = 0.05). The differential expression of FH associated genes was validated at the mRNA level by qRT-PCR and/or at the protein level by Western Blot or flow cytometry. Functional validation of monocyte scavenger receptor activities were done by binding assays and dose/time dependent uptake analysis using native and oxidized LDL.</p> <p>Results</p> <p>Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells.</p> <p>Conclusion</p> <p>Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.</p
Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease
The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions
Coexpression Network Analysis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome and Related Phenotypes
Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS–associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (DABD-GLU = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response–related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS–associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10−4). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS–related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10−4); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10−4) and BMI–adjusted waist-to-hip ratio (P = 2.4×10−4). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations
Is Replication the Gold Standard for Validating Genome-Wide Association Findings?
With the advent of genome-wide association (GWA) studies, researchers are hoping that reliable genetic association of common human complex diseases/traits can be detected. Currently, there is an increasing enthusiasm about GWA and a number of GWA studies have been published. In the field a common practice is that replication should be used as the gold standard to validate an association finding. In this article, based on empirical and theoretical data, we emphasize that replication of GWA findings can be quite difficult, and should not always be expected, even when true variants are identified. The probability of replication becomes smaller with the increasing number of independent GWA studies if the power of individual replication studies is less than 100% (which is usually the case), and even a finding that is replicated may not necessarily be true. We argue that the field may have unreasonably high expectations on success of replication. We also wish to raise the question whether it is sufficient or necessary to treat replication as the ultimate and gold standard for defining true variants. We finally discuss the usefulness of integrating evidence from multiple levels/sources such as genetic epidemiological studies (at the DNA level), gene expression studies (at the RNA level), proteomics (at the protein level), and follow-up molecular and cellular studies for eventual validation and illumination of the functional relevance of the genes uncovered
Myeloid IκBα Deficiency Promotes Atherogenesis by Enhancing Leukocyte Recruitment to the Plaques
Activation of the transcription factor NF-κB appears to be involved in different stages of atherogenesis. In this paper we investigate the role of NF-κB inhibitor IκBα in atherosclerosis. Myeloid-specific deletion of IκBα results in larger and more advanced lesions in LDL-R-deficient mice without affecting the compositional phenotype of the plaques or systemic inflammatory markers in the plasma. We show that IκBα-deleted macrophages display enhanced adhesion to an in vitro endothelial cell layer, coinciding with an increased expression of the chemokine CCL5. Also, in vivo we found that IκBαdel mice had more leukocytes adhering to the luminal side of the endothelial cell layers that cover the atherosclerotic plaques. Moreover, we introduce ER-MP58 in this paper as a new immunohistochemical tool for quantifying newly recruited myeloid cells in the atherosclerotic lesion. This staining confirms that in IκBαdel mice more leukocytes are attracted to the plaques. In conclusion, we show that IκBα deletion in myeloid cells promotes atherogenesis, probably through an induced leukocyte recruitment to plaques
- …