202 research outputs found

    Kinetic roughening of surfaces: Derivation, solution and application of linear growth equations

    Full text link
    We present a comprehensive analysis of a linear growth model, which combines the characteristic features of the Edwards--Wilkinson and noisy Mullins equations. This model can be derived from microscopics and it describes the relaxation and growth of surfaces under conditions where the nonlinearities can be neglected. We calculate in detail the surface width and various correlation functions characterizing the model. In particular, we study the crossover scaling of these functions between the two limits described by the combined equation. Also, we study the effect of colored and conserved noise on the growth exponents, and the effect of different initial conditions. The contribution of a rough substrate to the surface width is shown to decay universally as wi(0)(ξs/ξ(t))d/2w_i(0) (\xi_s/\xi(t))^{d/2}, where ξ(t)t1/z\xi(t) \sim t^{1/z} is the time--dependent correlation length associated with the growth process, wi(0)w_i(0) is the initial roughness and ξs\xi_s the correlation length of the substrate roughness, and dd is the surface dimensionality. As a second application, we compute the large distance asymptotics of the height correlation function and show that it differs qualitatively from the functional forms commonly used in the intepretation of scattering experiments.Comment: 28 pages with 4 PostScript figures, uses titlepage.sty; to appear in Phys. Rev.

    Theory of Hysteresis Loop in Ferromagnets

    Get PDF
    We consider three mechanisms of hysteresis phenomena in alternating magnetic field: the domain wall motion in a random medium, the nucleation and the retardation of magnetization due to slow (critical) fluctuations. We construct quantitative theory for all these processes. The hysteresis is characterized by two dynamic threshold fields, by coercive field and by the so-called reversal field. Their ratios to the static threshold field is shown to be function of two dimensionless variables constituted from the frequency and amplitude of the ac field as well as from some characteristics of the magnet. The area and the shape of the hysteresis loop are found. We consider different limiting cases in which power dependencies are valid. Numerical simulations show the domain wall formation and propagation and confirm the main theoretical predictions. Theory is compared with available experimental data.Comment: RevTex, 13 pages, 8 figures (PostScript), acknowledgements adde

    Stochastic Hysteresis and Resonance in a Kinetic Ising System

    Full text link
    We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscillating field, using Monte Carlo simulations and analytical theory. Attention is focused on small systems and weak field amplitudes at a temperature below TcT_{c}. For these restricted parameters, the magnetization switches through random nucleation of a single droplet of spins aligned with the applied field. We analyze the stochastic hysteresis observed in this parameter regime, using time-dependent nucleation theory and the theory of variable-rate Markov processes. The theory enables us to accurately predict the results of extensive Monte Carlo simulations, without the use of any adjustable parameters. The stochastic response is qualitatively different from what is observed, either in mean-field models or in simulations of larger spatially extended systems. We consider the frequency dependence of the probability density for the hysteresis-loop area and show that its average slowly crosses over to a logarithmic decay with frequency and amplitude for asymptotically low frequencies. Both the average loop area and the residence-time distributions for the magnetization show evidence of stochastic resonance. We also demonstrate a connection between the residence-time distributions and the power spectral densities of the magnetization time series. In addition to their significance for the interpretation of recent experiments in condensed-matter physics, including studies of switching in ferromagnetic and ferroelectric nanoparticles and ultrathin films, our results are relevant to the general theory of periodically driven arrays of coupled, bistable systems with stochastic noise.Comment: 35 pages. Submitted to Phys. Rev. E Minor revisions to the text and updated reference

    Dynamic phase transitions in thin ferromagnetic films

    Full text link
    Monte Carlo simulations have been used to investigate the dynamic phase behavior of a classical Heisenberg spin system with a bilinear exchange anisotropy in a planar thin film geometry. Studies of the field amplitude, frequency and temperature dependence show dynamic phase transitions in films subject to a pulsed oscillatory external field. Thin films with competing surface fields show separate and distinct dynamic phase transitions for the bulk and surface layers of the film. Between the two transitions, a mixed state with coexisting dynamically ordered and dynamically disordered phases is observed in the film. In contrast, the free film with no surface fields shows a single dynamic phase transition as in a bulk system.Comment: 25 pages including figures in pdf format, to be published in PR

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore