83 research outputs found

    Modelling of Transonic Shallow Cavity Flows, and Store Release Simulations from Weapon Bays

    Get PDF
    This paper aims to obtain more insight in the physics of cavit y flows. CFD results are analysed using a superposition of refle cted acoustic waves driven by the cavity flow showing clearly the r elative amplitude, and the time modulation of cavity tones. The tona l, and a part of the broadband noise, is found to be driven by the turb u- lent length scales, disabling the phase superposition of th e smaller wavelength. This can be seen as a way to complement the estab- lished Rossiter formula. In addition Scale-Adaptive Simul ations of store release from weapon bays using overset grids are prese nted. A six-degree-of-freedom model is coupled with the HMB3 flow so lver, and store release simulations are performed for a finned stor e inside an idealised bay. It is found that the trajectories of stores released from the cavities are affected by the mean flow field, the standin g waves, and the dynamics of the shear layer formed along the ca vity opening

    Seafloor change detection using multibeam echosounder backscatter: case study on the Belgian part of the North Sea

    Get PDF
    To characterize seafloor substrate type, seabed mapping and particularly multibeam echosounding are increasingly used. Yet, the utilisation of repetitive MBES-borne backscatter surveys to monitor the environmental status of the seafloor remains limited. Often methodological frameworks are missing, and should comprise of a suite of change detection procedures, similarly to those developed in the terrestrial sciences. In this study, pre-, ensemble and post-classification approaches were tested on an eight km2 study site within a Habitat Directive Area in the Belgian part of the North Sea. In this area, gravel beds with epifaunal assemblages were observed. Flourishing of the fauna is constrained by overtopping with sand or increased turbidity levels, which could result from anthropogenic activities. Monitoring of the gravel to sand ratio was hence put forward as an indicator of good environmental status. Seven acoustic surveys were undertaken from 2004 to 2015. The methods allowed quantifying temporal trends and patterns of change of the main substrate classes identified in the study area; namely fine to medium homogenous sand, medium sand with bioclastic detritus and medium to coarse sand with gravel. Results indicated that by considering the entire study area and the entire time series, the gravel to sand ratio fluctuated, but was overall stable. Nonetheless, when only the biodiversity hotspots were considered, net losses and a gradual trend, indicative of potential smothering, was captured by ensemble and post-classification approaches respectively. Additionally, a two-dimensional morphological analysis, based on the bathymetric data, suggested a loss of profile complexity from 2004 to 2015. Causal relationships with natural and anthropogenic stressors are yet to be established. The methodologies presented and discussed are repeatable and can be applied to broad-scale geographical extents given that broad-scale time series datasets become available

    Insights into the short-term tidal variability of multibeam backscatter from field experiments on different seafloor types

    Get PDF
    Three experiments were conducted in the Belgian part of the North Sea to investigate short-term variation in seafloor backscatter strength (BS) obtained with multibeam echosounders (MBES). Measurements were acquired on predominantly gravelly (offshore) and sandy and muddy (nearshore) areas. Kongsberg EM3002 and EM2040 dual MBES were used to carry out repeated 300-kHz backscatter measurements over tidal cycles (~13 h). Measurements were analysed in complement to an array of ground-truth variables on sediment and current nature and dynamics. Seafloor and water-column sampling was used, as well as benthic landers equipped with different oceanographic sensors. Both angular response (AR) and mosaicked BS were derived. Results point at the high stability of the seafloor BS in the gravelly area (2 dB and 4 dB at 45° respectively. The high-frequency backscatter sensitivity and short-term variability are interpreted and discussed in the light of the available ground-truth data for the three experiments. The envelopes of variability differed considerably between areas and were driven either by external sources (not related to the seafloor sediment), or by intrinsic seafloor properties (typically for dynamic nearshore areas) or by a combination of both. More specifically, within the gravelly areas with a clear water mass, seafloor BS measurements where unambiguous and related directly to the water-sediment interface. Within the sandy nearshore area, the BS was shown to be strongly affected by roughness polarization processes, particularly due to along- and cross-shore current dynamics, which were responsible for the geometric reorganization of the morpho-sedimentary features. In the muddy nearshore area, the BS fluctuation was jointly driven by high-concentrated mud suspension dynamics, together with surficial substrate changes, as well as by water turbidity, increasing the transmission losses. Altogether, this shows that end-users and surveyors need to consider the complexity of the environment since its dynamics may have severe repercussions on the interpretation of BS maps and change-detection applications. Furthermore, the experimental observations revealed the sensitivity of high-frequency BS values to an array of specific configurations of the natural water-sediment interface which are of interest for monitoring applications elsewhere. This encourages the routine acquisition of different and concurrent environmental data together with MBES survey data. In view of promising advances in MBES absolute calibration allowing more straightforward data comparison, further investigations of the drivers of BS variability and sensitivity are required

    Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations

    Get PDF
    We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29±9Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91±0.44). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05K±0.42K and 2.28±0.80, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081-2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (-3.79±0.76 for G6sulfur compared to -2.07±0.40 for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures. © 2021 Daniele Visioni et al

    Bottom and Suspended Sediment Backscatter Measurements in a Flume—Towards Quantitative Bed and Water Column Properties

    Get PDF
    For health and impact studies of water systems, monitoring underwater environments is essential, for which multi-frequency single- and multibeam echosounders are commonly used state-of-the-art technologies. However, the current scarcity of sediment reference datasets of both bottom backscatter angular response and water column scattering hampers empirical data interpretation. Comprehensive reference data derived from measurements in a controlled environment should optimize the use of empirical backscatter data. To prepare for such innovative experiments, we conducted a feasibility experiment in the Delta Flume (Deltares, The Netherlands). Several configurations of sonar data were recorded of the flume floor and suspended sediment plumes. The results revealed that flume reverberation was sufficiently low and that the differential settling of fine-sand plumes in the water column was clearly detected. Following this successful feasibility test, future comprehensive experiments will feature multi-frequency multi-angle measurements on a variety of sediment types, additional scatterers and sediment plumes, resulting in reference datasets for an improved interpretation of underwater backscatter measurements for scientific observation and sustainable management

    Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer

    Get PDF
    Aerosols from the Sarychev volcano eruption (Kuril Islands, northeast of Japan) were observed in the Arctic lower stratosphere a few days after the strongest SO2 injection which occurred on 15 and 16 June 2009. From the observations provided by the Infrared Atmospheric Sounding Interferometer (IASI) an estimated 0.9 Tg of sulphur dioxide was injected into the upper troposphere and lower stratosphere (UTLS). The resultant stratospheric sulphate aerosols were detected from satellites by the Optical Spectrograph and Infrared Imaging System (OSIRIS) limb sounder and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and from the surface by the Network for the Detection of Atmospheric Composition Changes (NDACC) lidar deployed at OHP (Observatoire de Haute-Provence, France). By the first week of July the aerosol plume had spread out over the entire Arctic region. The Sarychev-induced stratospheric aerosol over the Kiruna region (north of Sweden) was measured by the Stratospheric and Tropospheric Aerosol Counter (STAC) during eight balloon flights planned in August and September 2009. During this balloon campaign the Micro Radiomètre Ballon (MicroRADIBAL) and the Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) remote-sensing instruments also observed these aerosols. Aerosol concentrations returned to near-background levels by spring 2010. The effective radius, the surface area density (SAD), the aerosol extinction, and the total sulphur mass from STAC in situ measurements are enhanced with mean values in the range 0.15-0.21 μm, 5.5-14.7 μm2 cm-3, 5.5-29.5 × 10-4 km-1, and 4.9-12.6 × 10-10 kg[S] kg-1[air], respectively, between 14 km and 18 km. The observed and modelled e-folding time of sulphate aerosols from the Sarychev eruption is around 70-80 days, a value much shorter than the 12-14 months calculated for aerosols from the 1991 eruption of Mt Pinatubo. The OSIRIS stratospheric aerosol optical depth (AOD) at 750 nm is enhanced by a factor of 6, with a value of 0.02 in late July compared to 0.0035 before the eruption. The HadGEM2 and MIMOSA model outputs indicate that aerosol layers in polar region up to 14-15 km are largely modulated by stratosphere-troposphere exchange processes. The spatial extent of the Sarychev plume is well represented in the HadGEM2 model with lower altitudes of the plume being controlled by upper tropospheric troughs which displace the plume downward and upper altitudes around 18-20 km, in agreement with lidar observations. Good consistency is found between the HadGEM2 sulphur mass density and the value inferred from the STAC observations, with a maximum located about 1 km above the tropopause ranging from 1 to 2 × 10 -9 kg[S] kg-1[air], which is one order of magnitude higher than the background level. © Author(s) 2013.The authors thank the CNES balloon launching team for successful operations and the Swedish Space Corporation at Esrange. The ETHER database (CNES-INSUCNRS) and the CNES “sous-direction Ballon” are partners of the project. The StraPolEt ´ e project has been funded by the French ´ “Agence Nationale de la Recherche” (ANR-BLAN08-1-31627), the “Centre National d’Etudes Spatiales” (CNES), and the “Institut ´ Polaire Paul-Emile Victor” (IPEV). The AEROWAVE (Aerosols, Water Vapor and Electricity) and the HALOHA (HALOgen in High Altitudes) projects have been funded by the recently created French CNES-INSU Balloon Committee (so-called CSTB). We are grateful to Slimane Bekki and David Cugniet for their constructive comments about the AER-UPMC 2-D model, to Marc-Antoine Drouin for his help about the MIMOSA model, and to the LPC2E technical team for this successful campaign. Jim Haywood and Andy Jones were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). IASI was developed and built under the responsibility of the Centre National d’Etudes Spatiales (CNES, France). It is flown on board the Metop ´ satellites as part of the EUMETSAT Polar System. The IASI L1 data are received through the EUMETCast near-real-time data distribution service. L. Clarisse is a postdoctoral researcher with FRS-FNRS. We acknowledge the CALIOP team for acquiring and processing data as well as the ICARE team for providing and maintaining the computational facilities to store them. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), France (CNES), and Finland (Tekes). This study was supported by the French VOLTAIRE Labex (Laboratoire d’Excellence ANR-10-LABX-100-01) managed by the University of Orleans

    Anti-cytokine therapy in fibrosing alveolitis: where are we now?

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a condition that has a poor prognosis, with a median survival of 4-5 years irrespective of treatment. Ziesche et al (N Engl J Med 1999, 341: 1264-1269) describe an open randomised trial of 18 patients with IPF, unresponsive to corticosteroid treatment at high dose. Nine patients were treated with continued corticosteroid and nine with prednisolone plus interferon-γ 1b (IFN-γ). Significant benefits in physiological parameters are reported in the IFN-γ-treated group. An analysis of lung tissue by reverse-transcriptase-mediated polymerase chain reaction showed corresponding decreases in the transcription of transforming growth factor-β1 and connective tissue growth factor. This is the first report of treatment showing efficacy in this disease, albeit in a very preliminary study, but the data should be viewed with caution. This study is discussed in the context of other published studies of treatment for IPF and the scientific rationale on which it was based

    Mortality of Patients Lost to Follow-Up in Antiretroviral Treatment Programmes in Resource-Limited Settings: Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: The retention of patients in antiretroviral therapy (ART) programmes is an important issue in resource-limited settings. Loss to follow up can be substantial, but it is unclear what the outcomes are in patients who are lost to programmes. METHODS AND FINDINGS: We searched the PubMed, EMBASE, Latin American and Caribbean Health Sciences Literature (LILACS), Indian Medlars Centre (IndMed) and African Index Medicus (AIM) databases and the abstracts of three conferences for studies that traced patients lost to follow up to ascertain their vital status. Main outcomes were the proportion of patients traced, the proportion found to be alive and the proportion that had died. Where available, we also examined the reasons why some patients could not be traced, why patients found to be alive did not return to the clinic, and the causes of death. We combined mortality data from several studies using random-effects meta-analysis. Seventeen studies were eligible. All were from sub-Saharan Africa, except one study from India, and none were conducted in children. A total of 6420 patients (range 44 to 1343 patients) were included. Patients were traced using telephone calls, home visits and through social networks. Overall the vital status of 4021 patients could be ascertained (63%, range across studies: 45% to 86%); 1602 patients had died. The combined mortality was 40% (95% confidence interval 33%-48%), with substantial heterogeneity between studies (P<0.0001). Mortality in African programmes ranged from 12% to 87% of patients lost to follow-up. Mortality was inversely associated with the rate of loss to follow up in the programme: it declined from around 60% to 20% as the percentage of patients lost to the programme increased from 5% to 50%. Among patients not found, telephone numbers and addresses were frequently incorrect or missing. Common reasons for not returning to the clinic were transfer to another programme, financial problems and improving or deteriorating health. Causes of death were available for 47 deaths: 29 (62%) died of an AIDS defining illness. CONCLUSIONS: In ART programmes in resource-limited settings a substantial minority of adults lost to follow up cannot be traced, and among those traced 20% to 60% had died. Our findings have implications both for patient care and the monitoring and evaluation of programmes

    Pentanol isomer synthesis in engineered microorganisms

    Get PDF
    Pentanol isomers such as 2-methyl-1-butanol and 3-methyl-1-butanol are a useful class of chemicals with a potential application as biofuels. They are found as natural by-products of microbial fermentations from amino acid substrates. However, the production titer and yield of the natural processes are too low to be considered for practical applications. Through metabolic engineering, microbial strains for the production of these isomers have been developed, as well as that for 1-pentanol and pentenol. Although the current production levels are still too low for immediate industrial applications, the approach holds significant promise for major breakthroughs in production efficiency
    corecore