78 research outputs found

    Forward and Inverse Modeling of the Emission and Transmission Spectrum of GJ 436b: Investigating Metal Enrichment, Tidal Heating, and Clouds

    Get PDF
    The Neptune-mass GJ 436b is one of the most-studied transiting exoplanets with repeated measurements of both its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 micron, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 years. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum in tandem. We use a powerful dual-pronged modeling approach, comparing these data to both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study the effect of clouds and photochemical hazes on the spectra, but do not find strong evidence for either. The self-consistent and retrieval modeling combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective effective temperatures around 300--350 K, and disequilibrium chemistry. High metal-enrichments (>600x solar) can only occur from the accretion of rocky, rather than icy, material. Assuming Tint~300--350 K, we find that Q'~2x10^5--10^6, larger than Neptune's Q', and implying a long tidal circularization timescale for the planet's orbit. We suggest that Neptune-mass planets may be a more diverse class than previously imagined, with metal-enhancements potentially spanning several orders of magnitude, to perhaps over 1000x solar metallicity. High fidelity observations with instruments like JWST will be critical for characterizing this diversity.Comment: 15 pages, 18 figures. Revised for publication in Ap

    High fat diet-induced maternal obesity alters fetal hippocampal development

    Get PDF
    The importance of maternal nutrition for fetal brain development is increasingly recognized. Previous studies have suggested that maternal obesity or maternal exposure to obesogenic diets may permanently alter brain structure and function in the offspring. To test whether maternal exposure to a high-fat diet, prior and during gestation, alters fetal hippocampal development, we fed 8-week old C57BL/6 females with a high-fat diet (60% calories from fat) for 10 weeks prior to matting and 17 days after. Fetal brains at embryonic day E17 were used to determine developmental changes in the hippocampus. We report that maternal exposure to the high-fat diet induced small for gestational age (SGA) status and fetal resorption. The proliferation of neural progenitors was increased in the neuroepithelium from hippocampus and cortex in fetuses from mothers fed the high-fat diet when compared to controls, but decreased within the dentate gyrus (DG). Apoptosis in the hippocampus was decreased (Ammon’s Horn and fimbria). The differentiation of calretinin-positive neurons within the DG was also decreased

    Perinatal Epigenetic Determinants of Cognitive and Metabolic Disorders

    Get PDF
    Multiple cues from the environment of our indirect and immediate ancestors, which often persist throughout the prenatal period and adulthood, are shaping our phenotypes through either direct, parent-to-child influences, or transgenerational inheritance. These effects are due to gene-environment interactions, which are intended to be a predictive tool and a mechanism of quick adaptation to the environment, as compared with genetic variations that are inherited over many generations. In certain circumstances the influences induced by the gene-environment interactions can have deleterious effects upon the health status, in the context of a radical change in the environment that does not fit with the predicted conditions, via epigenetic alterations. Conversely the best fit to the expected environment might have a delayed aging process and a longer life span. This review will touch upon the Developmental Origins of Health and Disease (DoHAD) concept, while discussing recent advances in the understanding of metabolic and cognitive disruptions, with a focus on epigenetic factors, their transgenerational effects, and the consequences they might have upon the onset of chronic disease and premature exitus

    Perinatal α-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the Mecp2 DNA methylation in the whole brain of mouse offspring

    Get PDF
    Many animal and human studies indicated that dietary ω-3 fatty acids could have beneficial roles on brain development, memory, and learning. However, the exact mechanisms involved are far from being clearly understood, especially for α-linolenic acid (ALA), which is the precursor for the ω-3 elongation and desaturation pathways. This study investigated the alterations induced by different intakes of flaxseed oil (containing 50% ALA), during gestation and lactation, upon the expression of genes involved in neurogenesis, memory-related molecular processes, and DNA methylation, in the brains of mouse offspring at the end of lactation (postnatal day 19, P19). In addition, DNA methylation status for the same genes was investigated. Maternal flaxseed oil supplementation during lactation increased the expression of Mecp2, Ppp1cc, and Reelin, while decreasing the expression of Ppp1cb and Dnmt3a. Dnmt1 expression was decreased by postnatal flaxseed oil supplementation but this effect was offset by ALA deficiency during gestation. Mecp2 DNA methylation was decreased by maternal ALA deficiency during gestation, with a more robust effect in the lactation-deficient group. In addition, linear regression analysis revealed positive correlations between Mecp2, Reelin, and Ppp1cc, between Gadd45b, Bdnf, and Creb1, and between Egr1 and Dnmt1, respectively. However, there were no correlations, in any gene, between DNA methylation and gene expression. In summary, the interplay between ALA availability during gestation and lactation differentially altered the expression of genes involved in neurogenesis and memory, in the whole brain of the offspring at the end of lactation. The Mecp2 epigenetic status was correlated with ALA availability during gestation. However, the epigenetic status of the genes investigated was not associated with transcript levels, suggesting that either the regulation of these genes is not necessarily under epigenetic control, or that the whole brain model is not adequate for the exploration of epigenetic regulation in the context of this study

    Maternal α-linolenic acid availability during gestation and lactation alters the postnatal hippocampal development in the mouse offspring

    Get PDF
    The availability of ω-3 polyunsaturated fatty acids is essential for perinatal brain development. While the roles of docosahexaenoic acid (the most abundant ω-3 species) were extensively described, less is known about the role of α-linolenic acid (ALA), which is the initial molecular species undergoing elongation and desaturation within the ω-3 pathways. This study describes the association between maternal ALA availability during gestation and lactation, and alterations in hippocampal development (dentate gyrus) in the mouse male offspring, at the end of lactation (postnatal day 19, P19). Postnatal ALA supplementation increased cell proliferation (36% more proliferating cells compared to a control group) and early neuronal differentiation, while postnatal ALA deficiency increased cellular apoptosis within the dentate gyrus of suckling pups (61% more apoptotic cells compared to a control group). However, maternal ALA deficiency during gestation prevented the increased neurogenesis induced by postnatal supplementation. Fatty acid analysis revealed that ALA supplementation increased the concentration of the ω-3 species in the maternal liver and serum, but not in the brain of the offspring, excepting for ALA itself. Interestingly, ALA supplementation also increased the concentration of dihomo γ-linolenic acid (a ω-6 species) in the P19 brains, but not in maternal livers or serum. In conclusion, postnatal ALA supplementation enhances neurogenesis in the dentate gyrus of the offspring at postnatal day 19, but its beneficial effects are offset by maternal ALA deficiency during gestation. These results suggest that ALA is required in both fetal and postnatal stages of brain development

    Forward and Inverse Modeling of the Emission and Transmission Spectrum of GJ 436b: Investigating Metal Enrichment, Tidal Heating, and Clouds

    Get PDF
    The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 μm, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300–350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature T int ~ 300–350 K, we find a dissipation factor Q' ~ 2 × 10^5–10^6, larger than Neptune's Q', implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity

    Beyond Equilibrium Temperature: How the Atmosphere/Interior Connection Affects the Onset of Methane, Ammonia, and Clouds in Warm Transiting Giant Planets

    Get PDF
    The atmospheric pressure-temperature profiles for transiting giant planets cross a range of chemical transitions. Here we show that the particular shape of these irradiated profiles for warm giant planets below 1300 K lead to striking differences in the behavior of non-equilibrium chemistry compared to brown dwarfs of similar temperatures. Our particular focus is H2_2O, CO, CH4_4, CO2_2, and NH3_3 in Jupiter- and Neptune-class planets. We show the cooling history of a planet, which depends most significantly on planetary mass and age, can have a dominant effect on abundances in the visible atmosphere, often swamping trends one might expect based on Teq alone. The onset of detectable CH4_4 in spectra can be delayed to lower Teq for some planets compared to equilibrium, or pushed to higher Teq. The detectability of NH3_3 is typically enhanced compared to equilibrium expectations, which is opposite to the brown dwarf case. We find that both CH4_4 and NH3_3 can become detectable at around the same Teq (at Teq values that vary with mass and metallicity) whereas these "onset" temperatures are widely spaced for brown dwarfs. We suggest observational strategies to search for atmospheric trends and stress that non-equilibrium chemistry and clouds can serve as probes of atmospheric physics. As examples of atmospheric complexity, we assess three Neptune-class planets GJ 436b, GJ 3470b, and WASP-107, all around Teq=700 K. Tidal heating due to eccentricity damping in all three planets heats the deep atmosphere by thousands of degrees, and may explain the absence of CH4_4 in these cool atmospheres. Atmospheric abundances must be interpreted in the context of physical characteristics of the planet.Comment: Accepted to AJ. No additional significant change

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Herschel-ATLAS and ALMA: HATLAS J142935.3-002836, a lensed major merger at redshift 1.027

    Get PDF
    Context. The submillimetre-bright galaxy population is believed to comprise, aside from local galaxies and radio-loud sources, intrinsically active star-forming galaxies, the brightest of which are lensed gravitationally. The latter enable studies at a level of detail beyond what is usually possible by the observation facility. Aims. This work focuses on one of these lensed systems, HATLAS J142935.3−002836 (H1429−0028), selected in the Herschel-ATLAS field. Gathering a rich, multi-wavelength dataset, we aim to confirm the lensing hypothesis and model the background source’s morphology and dynamics, as well as to provide a full physical characterisation. Methods. Multi-wavelength high-resolution data is utilised to assess the nature of the system. A lensing-analysis algorithm that simultaneously fits different wavebands is adopted to characterise the lens. The background galaxy dynamical information is studied by reconstructing the 3D source plane of the ALMA CO (J:4 → 3) transition. Near-IR imaging from HST and Keck-AO allows to constrain rest-frame optical photometry independently for the foreground and background systems. Physical parameters (such as stellar and dust masses) are estimated via modelling of the spectral energy distribution taking source blending, foreground obscuration, and differential magnification into account. Results. The system comprises a foreground edge-on disk galaxy (at zsp = 0.218) with an almost complete Einstein ring around it. The background source (at zsp = 1.027) is magnified by a factor of μ ~ 8−10 depending on wavelength. It is comprised of two components and a tens-of-kpc-long tidal tail resembling the Antennæ merger. As a whole, the background source is a massive stellar system (1.32-0.41+ 0.63 × 1011 M⊙) forming stars at a rate of 394 ± 90  M⊙ yr-1, and it has a significant gas reservoir MISM = 4.6 ± 1.7 × 1010 M⊙. Its depletion time due to star formation alone is thus expected to be τSF = MISM/ SFR = 117 ± 51 Myr. The dynamical mass of one of the components is estimated to be 5.8 ± 1.7 × 1010 M⊙, and, together with the photometric total mass estimate, it implies that H1429−0028 is a major merger system (1:2.8-1.5+1.8)
    corecore