89 research outputs found

    Improved Thermal Transmittance Measurement with HFM Technique on Building Envelopes in the Mediterranean Area

    Get PDF
    Abstract Although the designed theoretical value of U can be derived from the thermal parameters of layers composing an opaque element, according to ISO 6946:2007, measurements are necessary to confirm the expected behaviour. Currently, the measurements of thermal transmittance based on Heat Flow Meter method (HFM) and according to standard ISO 9869-1:2014 are widely accepted. Anyway, some issues related to difficulties in measurements are present: the roughness of wall surfaces, the proper contact between the heat flow plate and the temperature probes with wall surfaces, undesired changes in weather conditions. This work presents the results obtained in thermal transmittance measurements with a modified HFM method, widely described in this paper. Differences between U-values obtained with the modified HFM method and theoretical ones were in the range 0.6 - 6.5 %. Moreover, the modified HFM method provided a result closer to the theoretical one, when compared to that obtained with standard HFM method (discrepancy with theoretical value were 0.6% and 16.4%, respectively)

    Textile sensors to measure sweat pH and sweat-rate during exercise

    Get PDF
    Sweat analysis can provide a valuable insight into a person’s well-being. Here we present wearable textile-based sensors that can provide real-time information regarding sweat activity. A pH sensitive dye incorporated into a fabric fluidic system is used to determine sweat pH. To detect the onset of sweat activity a sweat rate sensor is incorporated into a textile substrate. The sensors are integrated into a waistband and controlled by a central unit with wireless connectivity. The use of such sensors for sweat analysis may provide valuable physiological information for applications in sports performance and also in healthcare

    Internet-based training of coronary artery patients: the Heart Cycle Trial

    Get PDF
    © 2016, Springer Japan. Low adherence to cardiac rehabilitation (CR) might be improved by remote monitoring systems that can be used to motivate and supervise patients and tailor CR safely and effectively to their needs. The main objective of this study was to evaluate the feasibility of a smartphone-guided training system (GEX) and whether it could improve exercise capacity compared to CR delivered by conventional methods for patients with coronary artery disease (CAD). A prospective, randomized, international, multi-center study comparing CR delivered by conventional means (CG) or by remote monitoring (IG) using a new training steering/feedback tool (GEx System). This consisted of a sensor monitoring breathing rate and the electrocardiogram that transmitted information on training intensity, arrhythmias and adherence to training prescriptions, wirelessly via the internet, to a medical team that provided feedback and adjusted training prescriptions. Exercise capacity was evaluated prior to and 6 months after intervention. 118 patients (58 ± 10 years, 105 men) with CAD referred for CR were randomized (IG: n = 55, CG: n = 63). However, 15 patients (27 %) in the IG and 18 (29 %) in the CG withdrew participation and technical problems prevented a further 21 patients (38 %) in the IG from participating. No training-related complications occurred. For those who completed the study, peak VO 2 improved more (p = 0.005) in the IG (1.76 ± 4.1 ml/min/kg) compared to CG (−0.4 ± 2.7 ml/min/kg). A newly designed system for home-based CR appears feasible, safe and improves exercise capacity compared to national CR. Technical problems reflected the complexity of applying remote monitoring solutions at an international level

    Thoracoscopic versus open lobectomy debate: the pro argument

    Get PDF
    Introduction: Controversy persists about the role of VATS lobectomy for patients with lung cancer. This is particularly true in Europe, where VATS (video assisted thoracic surgery) lobectomy is performed for lung cancer less often than in the USA or Japan. This article reviews existing data comparing the results of VATS vs. open lobectomy for the treatment of lung cancer in order to provide a scientific basis for a rational assessment of this issue

    Influence of Carding and Pressing on Hygrothermal Properties and Fire Reaction of Hemp Fiber Nonwoven Mats

    Get PDF
    This article depicts the effect of carding and pressing on hygrothermal properties of hemp fibers nonwoven mats, trying to understand if their implementation can improve their behavior when employed as insulation materials in buildings. Hemp fibers belonging to Cannabis Sativa species and coming from local area (Apulia - Italy) were examined, then samples of carded and pressed hemp fibers nonwoven mats were prepared. According to European standards, the thermal conductivity, the vapor permeability and the fire reaction of hemp fibers samples were measured. Results were compared to each other and with those of a commercial nonwoven mat made with hemp (90 wt. %) and synthetic fibers (10 wt. %), used as reference. We observed that carded and pressed hemp fibers were characterized by a lower thermal conductivity when compared to unprocessed hemp fibers, likely because the removing of wood elements. On the other hand, not processed hemp fibers show higher breathability when compared to carded and pressed ones, as well as with respect to the commercial nonwoven mat. Moreover, it was proved that the absence of synthetic commingled fibers in hemp fibers allows a better behavior in fire reaction. At last, the improvement in terms of insulation properties of a hollow brick when filled with hemp fibers was verified, by comparing the thermal conductivities of an empty and a filled hollow brick; as expected, the filled hollow brick shows a lower thermal conductivity, underlining the effectiveness of hemp fibers as insulation material

    BIOTEX-biosensing textiles for personalised healthcare management.

    Get PDF
    Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and the chemical composition of body fluids, with a particular interest in sweat. A wearable sensing system has been developed that integrates a textile-based fluid handling system for sample collection and transport with a number of sensors including sodium, conductivity, and pH sensors. Sensors for sweat rate, ECG, respiration, and blood oxygenation were also developed. For the first time, it has been possible to monitor a number of physiological parameters together with sweat composition in real time. This has been carried out via a network of wearable sensors distributed around the body of a subject user. This has huge implications for the field of sports and human performance and opens a whole new field of research in the clinical setting

    Proetex: protective e-textiles to enhance the safety of emergency/disaster operators: current state of the projects' achievements

    Get PDF
    Proetex is a European Integrated Project dedicated to the realization of a micro- and nano-technology-based wearable equipment for emergency operators. During the first 3 years of work, two different and progressively improved versions of a complete “smart” uniform for fire-fighters and emergency rescuers have been realized. These garments aim at monitoring both physiological parameters, position and posture of the operators and the presence of external potential sources of danger and to send these data to a remote coordinating unit. In the following, the main issues of the design and realization will be described and discussed

    Wearable biosensing: signal processing and communication architectures issues, Journal of Telecommunications and Information Technology, 2005, nr 4

    Get PDF
    Long-term monitoring of human vital signs is becoming one of the most important fields of research of biomedical engineering. In order to achieve weeks to months of monitoring, new strategies for sensing, conditioning, processing and communication have to be developed. Several strategies are emerging and show different possible architectures. This paper essentially focuses on issues in wearable biosignal processing and communication architecture currently running at the Swiss Center for Electronics andMicrotechnology (CSEM) in the framework of several European projects
    corecore