30,566 research outputs found
On defining partition entropy by inequalities
Partition entropy is the numerical metric of uncertainty within
a partition of a finite set, while conditional entropy measures the degree of
difficulty in predicting a decision partition when a condition partition is
provided. Since two direct methods exist for defining conditional entropy
based on its partition entropy, the inequality postulates of monotonicity,
which conditional entropy satisfies, are actually additional constraints on
its entropy. Thus, in this paper partition entropy is defined as a function
of probability distribution, satisfying all the inequalities of not only partition
entropy itself but also its conditional counterpart. These inequality
postulates formalize the intuitive understandings of uncertainty contained
in partitions of finite sets.We study the relationships between these inequalities,
and reduce the redundancies among them. According to two different
definitions of conditional entropy from its partition entropy, the convenient
and unified checking conditions for any partition entropy are presented, respectively.
These properties generalize and illuminate the common nature
of all partition entropies
Recommended from our members
Chronic toxicity of inhaled thymol in lungs and respiratory tracts in mouse model.
Epinephrine HFA (Primatene® Mist) is a newly formulated asthma metered dose inhaler developed to replace the previous Primatene® Mist CFC. The formulation of Epinephrine HFA contains thymol, a substance recognized to be safe by the FDA. Although the content of thymol contained in Epinephrine HFA is much lower compared to many common foods and medications available, there are no known nonclinical data about the chronic toxicity of thymol through inhalation. Two sequential 6-month studies of identical design were conducted to assess the chronic toxicity of inhaled thymol in mice. Four treatment groups, (a) Air; (b) vehicle control; (c) Article-1 (thymol 0.1%); and (d) Article-2 (thymol 0.5%) were assessed in 128 mice for 26 weeks. The mice were sacrificed at the end of the treatment period and a histopathologic evaluation was performed with respect to lungs, bronchial lymph nodes, nasal passages/nasopharynx, and trachea. Forty-five pathologic assessment parameters (PAPs) were evaluated. In total, 5591 data points from 487 mouse organs were assessed. Chronic toxicity index was calculated for 16 PAPs that had multiple histopathologic abnormal observations. The t tests were conducted for these 16 PAPs (Articles-1 and 2 versus Air and vehicle control, respectively), and all P-values were greater than .05 indicating no significant differences between all treatment groups. An evaluation was also conducted for 25 PAPs that had only a very small number of pathologic abnormalities. No significant differences for chronic toxicity were found when comparing mice under long-term repeated exposure of high doses of inhaled thymol and mice that inhaled no thymol
Pharmacokinetic study of thymol after intravenous injection and high-dose inhalation in mouse model.
Thymol is generally recognized as a safe substance by the FDA and has been widely used in the pharmaceutical, food, and cosmetic industries. Pharmacokinetic (PK) studies of thymol have been previously conducted for oral administration, but there has been no PK study for inhalation administration or intravenous (IV) injection. This study aims at exploring and comparing the inhalation and IV PK profile of thymol in a mouse model. The inhalation PK for mouse model was corrected with fur/skin absorption. Thirty-two male CD-1 mice were randomized into two study arms, Arm-A for intravenous (n = 16) and Arm-B for inhalation (n = 16). The amount of thymol in the mouse serum was measured for Arm-A and for Arm-B at the highest dose. Furthermore, 48 mice were utilized for fur/skin absorption of thymol. In total, 320 mouse serum samples for thymol were analyzed by LC/MS method. After inhalation, the peak concentration of thymol in mouse serum was 42.3 ng/mL (Cmax ) and occurred at 2 minutes (tmax ). The AUC of the inhaled thymol at 0-60 minutes (AUC0-60) was 464 ng/mL/min. From 10-60 minutes post-dose, the PK inhalation curve appeared to be higher than that for the IV injection. This is likely attributed to the effect of absorption of thymol through the fur/skin of mice. After an adjustment by fur/skin absorption, the PK profile for net inhalation closely matched the two-compartment model. In fact, the bioavailability for the net inhalation of thymol was 74% and 77% relative to that for IV injection per AUC0-60min and AUC0-infinite, respectively
Dependent Event Types
International audienceIn the present theory, non-scopal noun phrases are entered into event types. This means that they end up restricting a role in a bare event type, because their scopal meaning is contributed to the meaning of the sentence by applying with generalized application an n-place event type to that scopal meaning
Dynamic Monte Carlo Study of the Two-Dimensional Quantum XY Model
We present a dynamic Monte Carlo study of the Kosterlitz-Thouless phase
transition for the spin-1/2 quantum XY model in two dimensions. The short-time
dynamic scaling behaviour is found and the dynamical exponent , and
the static exponent are determined at the transition temperature.Comment: 6 pages with 3 figure
Multilayer ferroelectret-based energy harvesting insole
This paper reports a flexible energy harvesting insole made of multilayer ferroelectrets, and demonstrates that this insole can power a wireless signal transmission. We have previously studied the energy harvesting characteristics of single and 10-layer ferroelectrets under compressive forces with quantified amplitudes and frequencies. In this work, we fabricate a flexible insole using multilayer ferroelectrets, and increase the number of layers from 10 up to 80, then use this insole to harvest energy from footsteps. We use this insole to power a commercial ZigBee wireless transmitter, and successfully demonstrate that an 8-bit data transmission can be solely powered by the energy harvested from this insole for every 3 to 4 footsteps. It confirms the anticipation from our previous work that the multilayer ferroelectrets are capable of powering the start-up and transmission of a low-power chipset, and shows a potential of using this energy harvesting insole in wearable applications
Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway.
BACKGROUND: Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. METHODS: BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. RESULTS: In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. CONCLUSIONS: Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection
Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeOFFeAs
A series of layered CeOFFeAs compounds with x=0 to 0.20 are
synthesized by solid state reaction method. Similar to the LaOFeAs, the pure
CeOFeAs shows a strong resistivity anomaly near 145 K, which was ascribed to
the spin-density-wave instability. F-doping suppresses this instability and
leads to the superconducting ground state. Most surprisingly, the
superconducting transition temperature could reach as high as 41 K. The very
high superconducting transition temperature strongly challenges the classic BCS
theory based on the electron-phonon interaction. The very closeness of the
superconducting phase to the spin-density-wave instability suggests that the
magnetic fluctuations play a key role in the superconducting paring mechanism.
The study also reveals that the Ce 4f electrons form local moments and ordered
antiferromagnetically below 4 K, which could coexist with superconductivity.Comment: 4 pages, 5 figure
- …