61 research outputs found

    Alantolactone exerts anti-proliferative and apoptotic effects on BGC823 and SGC7901 cells via activation of p38MAPK and inhibition of NF-κB signaling pathway

    Get PDF
    Purpose: To investigate the anti-proliferative and apoptotic influences of alantolactone on gastric carcinoma (GC) cell lines, and the mechanism(s) involved. Methods: Human gastric cancer cell line (BGC823) and gastric adenocarcinoma lymph node metastasis cell line (SGC7901) were maintained in Ham’s F12 medium supplemented with 10 % heatinactivated fetal bovine serum (FBS). In each group of cancer cell line, 5 groups of cells were used: control and four alantolactone groups which were treated with increasing concentrations of alantolactone (5 - 30 μM) for varying periods. Proliferation was determined using MTT assay, while realtime quantitative polymerase chain reaction (qRT-PCR) was used to assay the expressions of apoptosis- and metastasis-related genes. The expressions of p38MAPK and nuclear transcription factor-κB (NF-κB) in BGC823 and SGC7901 cells were measured with Western blotting. Results: Phosphorylated protein (p-p38 protein) expression was significantly higher in both groups of GC cells, relative to control (p < 0.05). The expressions of NF-κB in plasma protein were markedly higher in both groups of GC cells than in control group, but the corresponding expressions in nuclear protein were significantly lower in both groups of GC cells, relative to control (p < 0.05). Conclusion: Alantolactone exerts anti-proliferative and apoptotic effects on BGC823 and SGC7901 cells via mechanisms involving activation of the p38MAPK, and inhibition of the NF-κB signaling pathways. Thus, alantolactone may be a new and effective anti-gastric cancer drug

    Complete genome of Phenylobacterium zucineum – a novel facultative intracellular bacterium isolated from human erythroleukemia cell line K562

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phenylobacterium zucineum </it>is a recently identified facultative intracellular species isolated from the human leukemia cell line K562. Unlike the known intracellular pathogens, <it>P. zucineum </it>maintains a stable association with its host cell without affecting the growth and morphology of the latter.</p> <p>Results</p> <p>Here, we report the whole genome sequence of the type strain HLK1<sup>T</sup>. The genome consists of a circular chromosome (3,996,255 bp) and a circular plasmid (382,976 bp). It encodes 3,861 putative proteins, 42 tRNAs, and a 16S-23S-5S rRNA operon. Comparative genomic analysis revealed that it is phylogenetically closest to <it>Caulobacter crescentus</it>, a model species for cell cycle research. Notably, <it>P. zucineum </it>has a gene that is strikingly similar, both structurally and functionally, to the cell cycle master regulator CtrA of <it>C. crescentus</it>, and most of the genes directly regulated by CtrA in the latter have orthologs in the former.</p> <p>Conclusion</p> <p>This work presents the first complete bacterial genome in the genus <it>Phenylobacterium</it>. Comparative genomic analysis indicated that the CtrA regulon is well conserved between <it>C. crescentus </it>and <it>P. zucineum</it>.</p

    Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags

    Get PDF
    BACKGROUND: The snake venom gland is a specialized organ, which synthesizes and secretes the complex and abundant toxin proteins. Though gene expression in the snake venom gland has been extensively studied, the focus has been on the components of the venom. As far as the molecular mechanism of toxin secretion and metabolism is concerned, we still knew a little. Therefore, a fundamental question being arisen is what genes are expressed in the snake venom glands besides many toxin components? RESULTS: To examine extensively the transcripts expressed in the venom gland of Deinagkistrodon acutus and unveil the potential of its products on cellular structure and functional aspects, we generated 8696 expressed sequence tags (ESTs) from a non-normalized cDNA library. All ESTs were clustered into 3416 clusters, of which 40.16% of total ESTs belong to recognized toxin-coding sequences; 39.85% are similar to cellular transcripts; and 20.00% have no significant similarity to any known sequences. By analyzing cellular functional transcripts, we found high expression of some venom related genes and gland-specific genes, such as calglandulin EF-hand protein gene and protein disulfide isomerase gene. The transcripts of creatine kinase and NADH dehydrogenase were also identified at high level. Moreover, abundant cellular structural proteins similar to mammalian muscle tissues were also identified. The phylogenetic analysis of two snake venom toxin families of group III metalloproteinase and serine protease in suborder Colubroidea showed an early single recruitment event in the viperids evolutionary process. CONCLUSION: Gene cataloguing and profiling of the venom gland of Deinagkistrodon acutus is an essential requisite to provide molecular reagents for functional genomic studies needed for elucidating mechanisms of action of toxins and surveying physiological events taking place in the very specialized secretory tissue. So this study provides a first global view of the genetic programs for the venom gland of Deinagkistrodon acutus described so far and an insight into molecular mechanism of toxin secreting. All sequences data reported in this paper have been submitted into the public database [GenBank: DV556511-DV565206]

    The genome evolution and domestication of tropical fruit mango

    Get PDF
    Background: Mango is one of the world’s most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. Results: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. Conclusions: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces

    Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Get PDF
    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica

    The genome evolution and domestication of tropical fruit mango

    Get PDF
    Background: Mango is one of the world’s most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. Results: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. Conclusions: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces

    Vpr14-88-Apobec3G Fusion Protein Is Efficiently Incorporated into Vif-Positive HIV-1 Particles and Inhibits Viral Infection

    Get PDF
    APOBEC3G (A3G), a deoxycytidine deaminase, is a potent host antiviral factor that can restrict HIV-1 infection. During Vif-negative HIV-1 replication, A3G is incorporated into HIV-1 particles, induces mutations in reverse transcribed viral DNA and inhibits reverse transcription. However, HIV-1 Vif counteracts A3G's activities by inducing its degradation and by blocking its incorporation into HIV-1 particles. Thus, it is interesting to elucidate a mechanism that would allow A3G to escape the effects of Vif in order to rescue its potent antiviral activity and to provide a possible novel therapeutic strategy for treating HIV-1 infection.In this study, we generated an R88-A3G fusion protein by fusing A3G to a virion-targeting polypeptide (R14-88) derived from HIV-1 Vpr protein and compared its antiviral effects relative to those of HA-tagged native A3G (HA-A3G). Our study showed that transient expression of the R88-A3G fusion protein in both Vif(-) and Vif(+) HIV-1 producing cells drastically inhibited viral infection in HeLa-CD4-CCR5-cells, CD4(+) C8166 T cells and human primary PBMCs. Moreover, we established CD4(+) C8166 T cell lines that stably express either R88-A3G or HA-A3G by transduction with VSV-G-pseudotyped lentiviral vector that harbor expression cassettes for R88-A3G or HA-A3G, respectively, and tested their susceptibility to Vif(+) HIV-1 infection. Our results clearly reveal that expression of R88-A3G in transduced CD4(+) C8166 cells significantly blocked Vif(+) HIV-1 infection. In an attempt to understand the mechanism underlying the antiviral activity of R88-A3G, we demonstrated that R88-A3G was efficiently incorporated into viral particles in the presence of Vif. Moreover, PCR analysis revealed that R88-A3G significantly inhibited viral cDNA synthesis during the early stage of Vif(+) virus infection.Our results clearly indicate that R88 delivers A3G into Vif(+) HIV-1 particles and inhibits infectivity and spread of the virions among CD4(+) T cells. This study provides evidence for an effective strategy to modify a host protein with innate anti-HIV-1 activity and rescue its potent anti-HIV potential in the presence of Vif. Further characterization and optimization of this system may lead to the development of an effective therapeutic approach against HIV-1 infection
    • …
    corecore