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Examining the U-shaped
relationship of sleep duration and
systolic blood pressure with risk of
cardiovascular events using a
novel recursive gradient
scanning model
Shuo Yang1, Nanxiang Zhang1, Zichao Liang1, Yuduan Han1,
Hao Luo1, Yingfeng Ge1, Jianan Yin1, Chonglong Ding1, Chao Li2,
Qitong Zhang2 and Jinxin Zhang1*
1Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China,
2Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University,
Guangzhou, China

Background: Observational studies have suggested U-shaped relationships
between sleep duration and systolic blood pressure (SBP) with risks of many
cardiovascular diseases (CVDs), but the cut-points that separate high-risk and
low-risk groups have not been confirmed. We aimed to examine the U-shaped
relationships between sleep duration, SBP, and risks of CVDs and confirm the
optimal cut-points for sleep duration and SBP.
Methods: A retrospective analysis was conducted on NHANES 2007–2016 data,
which included a nationally representative sample of participants. The maximum
equal-odds ratio (OR) method was implemented to obtain optimal cut-points
for each continuous independent variable. Then, a novel “recursive gradient
scanning method” was introduced for discretizing multiple non-monotonic
U-shaped independent variables. Finally, a multivariable logistic regression
model was constructed to predict critical risk factors associated with CVDs after
adjusting for potential confounders.
Results: A total of 26,691 participants (48.66% were male) were eligible for the
current study with an average age of 49.43 ± 17.69 years. After adjusting for
covariates, compared with an intermediate range of sleep duration (6.5–8.0 h
per day) and SBP (95–120 mmHg), upper or lower values were associated with a
higher risk of CVDs [adjusted OR (95% confidence interval) was 1.20 (1.04–1.40)
for sleep duration and 1.17 (1.01–1.36) for SBP].
Conclusions: This study indicates U-shaped relationships between SBP, sleep
duration, and risks of CVDs. Both short and long duration of sleep/higher and
lower BP are predictors of cardiovascular outcomes. Estimated total sleep duration
of 6.5–8.0 h per day/SBP of 95–120 mmHg is associated with lower risk of CVDs.
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Abbreviations

RCTs, randomized controlled trials; BP, blood pressure; SBP, systolic blood pressure; CVDs, cardiovascular
diseases; BMI, body mass index; CI, confidence interval; AIC, Akaike information criterion; OR, odds ratio;
Min-P, the minimum p-value approach used to determine the optimal cut-points; SE, standard error;
Q1–Q3, lower and upper quantile values.
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1. Introduction

Cardiovascular diseases (CVDs) continue to be the foremost

cause of both morbidity and mortality on a global scale (1).

Recent studies have suggested that there may be U-shaped

associations between systolic blood pressure (SBP), sleep

duration, and CVDs (2–8). Thus, determining the optimal range

of SBP and sleep duration is crucial for reducing the risk of CVDs.

When examining the relationships between continuous

explanatory variables and health-related outcomes in medical

research, it is commonly recommended to investigate U-shaped

relationships when non-linear effects are suspected (9–11). If we

make the simplifying assumption that these continuous variables

exhibit a linear correlation with prognosis and directly

incorporate them into the construction of regression models, this

approach will lead to a significant increase in the residuals of

regression analysis. On the other hand, the epidemiologists

consequently may fail to find a fundamental clue to formulate

intervention measures. Although Cox regression models

supplemented by flexible smoothing techniques (12–14), such as

penalized splines and restricted cubic splines, can handle the

U-shaped effects of continuous variables, many clinical and

epidemiological researchers prefer to categorize continuous

explanatory variables into high-risk and low-risk groups (15, 16).

Optimal cut-points can identify crucial predictor thresholds,

facilitate the development of patient classification schemes, and

assist in clinical treatment strategies. However, determining

appropriate cut-points becomes critical when clinical reference

ranges are unavailable or cannot be directly applied to

populations with distinct characteristics (17–21).

Two methods are utilized to discretize continuous independent

variables in biostatistical analysis. One of them is the data-oriented

cut-points approach (22, 23), which involves utilizing percentiles

like median or quartiles based on the distribution of continuous

variables. Although this method is easy to implement, it can

produce arbitrary cut-points that do not consider the relationship

with survival outcomes and may lead to inaccurate estimates of

the actual effects (24). The other approach is the maximum

statistic or minimum p-value approach (25), which chooses a

cut-point with maximum χ2 statistic as the optimal cut-point for

binary outcomes. However, the above two discretization

approaches have a high probability of dividing individuals with

similar risk into different groups, leading to inconsistent

discretization results for high- and low-risk groups.

To address the limitations of conventional discretization

methods and fulfill the requirement of identifying optimal cut-

points for continuous predictors that exhibit a U-shaped

relationship with outcomes, our team proposed two novel

methods to discretize the single non-monotonic continuous

variable, namely, “two cut-points with maximum odds ratio (OR)

value method” (26) and “optimal equal-hazard ratio with

minimum Akaike information criterion (AIC) value method”

(27), which have been widely validated by peer review consensus.

The OR or RR values obtained by our original methods not only

directly respond to clinical needs but also optimize the

evaluation from a statistical methodology perspective. Due to the
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universality of our proposed methods, the methods were quickly

applied by domestic and foreign scholars to solve their practical

problems, such as optimal cut-points identification of biomarkers

(i.e., red blood cell distribution width for prognostic significance,

serum creatinine for kidney injury after lung transplantation, and

hemoglobin for surgical coronary revascularization). However,

extending this discretization method to multiple non-monotonic

independent variables can be challenging, as it requires a

more complex consideration on either theoretical assumption

or algorithm implementation. Currently, our team has developed

a novel “recursive gradient scanning method” for the

discretization of multiple non-monotonic independent variables

simultaneously. This approach enables us to prioritize critical

intervention measures and achieve targeted goals efficiently. The

proposed method will provide a theoretical basis and algorithmic

support for identifying significant influencing factors and

constructing intervention programs.

This study utilized data from the National Health and Nutrition

Examination Surveys (NHANES) covering 12 years to examine the

relationships between sleep duration, SBP, and risks of CVDs. In

addition, this study aimed to identify the optimal cut-points for

sleep duration and SBP with CVDs as the outcome of interest, test

the new method on real-world data, and compare its performance

with other existing methods for discretizing multiple non-

monotonic independent variables.
2. Materials and methods

2.1. Sample and design

The NHANES surveys use a complex, multistage, probability

sampling design to create a representative sample of the

civilian, non-institutionalized US population, and are conducted

in a series of cross-sectional population-based surveys. Each

year, about 5,000 individuals are examined, and data are

released to the public in 2-year cycles. NHANES datasets have

detailed information on data collection procedures and analytic

guidelines provided elsewhere (28, 29). To gather information

on CVDs, questionnaires were added to the surveys from 2007

to 2016, and this study used a total of five cycles (NHANES

2007–2016).
2.2. Definition of outcome

The presence of CVDs was ascertained using a combination of

self-reported physician diagnoses and standardized medical status

questionnaires, which were completed during individual

interviews. The participants were specifically asked if a healthcare

professional had ever informed them of having congestive heart

failure (CHF), coronary heart disease (CHD), angina pectoris,

heart attack, or stroke. Those who answered “yes” to any of the

above were considered as having CVDs, and the outcome was

converted to a dichotomous variable. Participants who responded

with “did not know” were excluded from the analysis.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1210171
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Yang et al. 10.3389/fcvm.2023.1210171
2.3. Sleep duration and SBP assessment
(ascertainment of exposure)

NHANES datasets use responses to the question “How much

sleep do you usually get at night on weekdays or workdays?” to

obtain information on sleep duration. In cases where individuals

reported a sleep duration of ≥12 h, this value was coded as 12. To

minimize the risk of inaccurate sleep duration data and the

potential impact of poor health on the study results, we opted to

exclude individuals with missing sleep duration and those who

reported sleeping less than 4 h. An average of three consecutive

blood pressure measurements taken after resting quietly for 5 min

was used to determine the SBP and diastolic blood pressure (DBP).
2.4. Covariate data collection

In our analysis, sociodemographic and lifestyle characteristics

were considered covariates based on previously published studies

(30–32). The study took multiple sociodemographic factors into

account, such as gender, age, race (Mexican American, Other

Hispanic, Non-Hispanic White, Non-Hispanic Black, and Other

Race), poverty income ratio (PIR) (≤130%, 131%–185%, and

≥186%) (33), marital status (unmarried, married or living with

partners, divorced or separated), and educational level (≤9th
grade, 9–11th grade, high school grade, college and above). In

this study, lifestyle characteristics were defined as physical

activity, calculated in metabolic equivalents (METs) minutes per

week and classified as <600 MET-min/week or ≥600 MET-min/

week (34), smoking status (never, ever, and current), and alcohol

consumption (never, ever, moderate, and excessive intake).
2.5. Statistical analysis

All statistical analyses in this study were adjusted for the

complex sampling design of NHANES.
2.5.1. Descriptive analysis and modeling
Participant characteristics were summarized using weighted

means and standard deviations for continuous variables and

weighted counts and percentages for categorical variables.

Differences between participants with and without CVDs were

assessed using Rao–Scott χ2 for categorical variables and

independent t-tests for continuous variables. A multivariable

logistic regression model was used to examine the association

between sleep duration, SBP, and the risk of CVDs, with the

lower risk group serving as the reference category.
2.5.2. Graphical diagnostic plot
The semiparametric models with penalized B-splines

(P-splines) were fitted using the R package “SemiPar” (35). This

approach balances the goodness of fit and variance to curve

the relationship and assess the statistical significance of the

non-linear term.
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2.5.3. Find two optimal cut-points for each
continuous explanatory variable as original
cut-points

If the visual representation of the curve indicates a U-shaped

relationship (df > 2 using semiparametric regression analysis), then

the “two cut-points with maximum OR value method (26)” was used

to identify the original upper and lower cut-points of the continuous

explanatory variable at which the OR reaches its maximum.
2.5.4. The recursive gradient scanning method for
the discretization of multiple non-monotonic
independent variables

The details of the methods raised by us to discretize multiple

non-monotonic independent variables simultaneously are

described as follows (depicted in Figure 1).

(1) If the curve depicted in the plot implies U-shaped associations

between multiple independent variables and corresponding

lnOR, we used the “two cut-points with maximum OR value

method” for each variable to identify its optimal cut-points

as their starting points for scanning, respectively.

(2) Find the percentile rankings of the estimated lnOR values for

each independent variable, which are represented as Qk, k = 1,

2,…, 100. Subsequently, draw a horizontal line (known as

“gradient”) parallel to the x-axis for each percentile between

the 5th and the 95th percentile of the estimated lnOR. The

y-value for each of these lines is set to Qk, k = 5, 6,…, 95.

These lines intersect the fitted U-shaped curve at two points.

(3) Interpolation: The R-function spline interpolation technique

is utilized to generate new data points as candidate cut-

points, resulting in a smooth curve that maintains equal

lnOR values across candidate cut-points (with a constraint

for candidate cut-points that jlnOR1k � lnOR2kj � 0:01).

(4) The recursive gradient scanning method: we set up a loop

program to refine the boundary points and improve the

discretization accuracy. Scanning starts from original cut-

points of each variable and then moves up or down vertically

in each gradient by the step of lnOR × 1/100. If the model fits

increasingly well during the upward or downward scan, the

model stops at the P95 of lnOR for the upward scan and at

the P5 for the downward scan. If the model fits increasingly

worse during the upward or downward scan, the current scan

is suspended and the scan continues in the opposite

direction. The number of independent variables determines

the scanning method (e.g., if the number of variables is k,

there are 2k scanning methods). Specifically, if k = 2, there are

four scanning methods: (1) Scanning upward for X1

combined with downward for X2; (2) Scanning downward for

X1 combined with upward for X2; (3) Scanning upward

for both X1 and X2 simultaneously; (4) Scanning downward

for both X1 and X2 simultaneously (illustrated in Figure 2).

(5) Select the best cut-points according to model fitness: We scan

and calculate from the original cut-points in each program

loop until the desired results are achieved. Then the

goodness of fit index of the model under hyperparametric

scenarios was obtained, such as AIC, Nagelkerke R2, and −2
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FIGURE 1

The process of calculation implementation.
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log-likelihood. Select the respective variable cut-points

corresponding to the best-fit model under each parameter

combination as the final cut-points, place the discretized

classified variables into the regression model, and rank the

influencing factors according to the magnitude of OR values.

2.5.5. Measures of predictive ability
The predictive performance of logistic regression models fitted

with covariates discretized by different approaches was evaluated.

The areas under the curve (AUC) constructed by receiver
Frontiers in Cardiovascular Medicine 04
operating characteristic (ROC) analysis were calculated to

compare different model’s predictive capability.
2.5.6. Implementation in R
The minimum p-value method with log-rank statistics was

implemented using the R package “maxstat.” The freely available

R package “SemiPar” was applied to fit logistic regression models

with splines. The two-sided significance level for all tests was set

at 0.05, and any p-values less than this threshold were deemed

statistically significant. The R programming language, version
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FIGURE 2

One of the scenarios of the scanning strategies for recursive gradient scanning method (i.e., scanning downward for X1 combined with upward for X2).

FIGURE 3

Flow chart for population selection. This figure represents the sample selection for the analysis of sleep duration as well as SBP with CVDs.

Yang et al. 10.3389/fcvm.2023.1210171
4.1.2 (R Foundation for Statistical Computing, http://www.

R-project.org), was utilized for conducting the statistical analyses.
3. Results

3.1. Study population

This study included a total of 26,691 participants from

NHANES 2007–2016, with an average age of 49.4 years and
Frontiers in Cardiovascular Medicine 05
51.3% being female. Subjects younger than 20 years of age

(n = 21,387) and those having missing data on SBP (n = 2,194),

sleep duration (n = 74), and CVDs (n = 242) were excluded.

Thus, 26,691 participants were included in the final list (Figure 3).
3.2. Characteristics of participants

The characteristics of study participants are presented in Table 1.

Among all participants, 10.44% (2,786/26,991) reported having
frontiersin.org
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TABLE 1 The characteristics of participants in the NHANES 2007–2016 according to CVDs.

Participants’ characteristics Total (n = 26,691) CVDs p-value

No, n = 23,905 Yes, n = 2,786
Age, years, mean (SD) 49.43 (17.69) 47.49 (17.15) 66.07 (12.81) <0.0001

Sex, n (%) <0.0001

Male 12,987 (48.66) 11,427 (47.80) 1,560 (55.99)

Female 13,704 (51.34) 12,478 (52.20) 1,226 (44.01)

Ethnicity, n (%) <0.0001

Mexican American 4,081 (15.29) 3,818 (15.97) 263 (9.44)

Other Hispanic 2,851 (10.68) 2,612 (10.93) 239 (8.58)

Non-Hispanic White 11,173 (41.86) 9,705 (40.60) 1,468 (52.69)

Non-Hispanic Black 5,670 (21.24) 5,041 (21.09) 629 (22.58)

Other race 2,916 (10.93) 2,729 (11.41) 187 (6.71)

Marital status, n (%) <0.0001

Unmarried 7,080 (26.53) 6,743 (28.22) 337 (12.10)

Married or Living with partner 13,668 (51.21) 12,272 (51.37) 1,396 (50.10)

Divorced or Separated 5,943 (22.26) 4,876 (20.41) 1,053 (37.80)

Education, n (%) <0.0001

<9th grade 2,885 (10.82) 2,437 (10.20) 448 (16.11)

9–11th grade 3,898 (14.62) 3,391 (14.20) 507 (18.23)

High school 6,032 (22.62) 5,333 (22.33) 699 (25.13)

Some college 7,724 (28.97) 7,021 (29.40) 703 (25.28)

≥College graduate 6,127 (22.97) 5,703 (23.87) 424 (15.25)

Income group, n (%) <0.0001

Lowest, poverty income ratio ≤1.30 7,868 (29.48) 6,875 (28.76) 993 (35.64)

Middle, poverty income ratio 1.31–1.85 3,076 (11.52) 2,701 (11.30) 375 (13.46)

Highest, poverty income ratio ≥1.86 15,747 (59.00) 14,329 (59.94) 1,418 (50.90)

Smoking, n (%) <0.0001

Current 5,500 (20.62) 4,891 (20.48) 609 (21.87)

Ever 6,351 (23.81) 5,281 (22.11) 1,070 (38.42)

Never 14,820 (55.57) 13,714 (57.41) 1,106 (39.71)

Alcohol, n (%) <0.0001

Moderate alcohol 11,293 (46.14) 11,472 (47.99) 846 (30.37)

Excessive alcohol 3,413 (13.94) 3,340 (13.97) 384 (13.79)

Ever 6,117 (24.99) 5,546 (23.20) 1,120 (40.19)

Never 3,653 (14.93) 3,547 (14.84) 436 (15.65)

Sitting, min/day, Mean (SD) 356.44 (203.12) 352.25 (201.89) 392.47 (210.06) <0.0001

Physical activity, n (%) <0.0001

MET < 600 min/week 15,588 (58.40) 13,602 (56.90) 1,986 (71.30)

MET≥ 600 min/week 11,103 (41.60) 10,303 (43.10) 800 (28.70)

Sleep duration, hours, median (IQR) 7 (6–8) 7 (6–8) 7 (6–8) 0.0483

Systolic blood pressure, mmHg, mean (SD) 123.88 (18.47) 123.04 (17.94) 131.08 (21.19) <0.0001

Fasting blood glucose, mmol/L, mean (SD) 5.74 (2.24) 5.64 (2.14) 6.57 (2.86) <0.0001

High-density lipoprotein, mmol/L, mean (SD) 1.36 (0.42) 1.38 (0.42) 1.29 (0.41) <0.0001

Triglyceride, mmol/L, mean (SD) 1.76 (1.51) 1.74 (1.51) 1.89 (1.45) <0.0001

BMI, kg/m2, mean (SD) 29.10 (6.90) 28.95 (6.84) 30.42 (7.32) <0.0001

CRP, mg/dl, median (IQR) 0.20 (0.08–0.46) 0.19 (0.07–0.44) 0.27 (0.11–0.61) 0.0001

Hypertension, n (%) <0.0001

No 14,495 (54.26) 13,898 (58.14) 583 (20.91)

Yes 12,196 (45.74) 10,006 (41.86) 2,203 (79.09)

Diabetes mellitus, n (%) <0.0001

No 23,276 (87.20) 21,419 (89.60) 1,855 (66.57)

Yes 3,415 (12.80) 2,486 (10.40) 931 (33.43)

Hyperlipidemia, n (%) <0.0001

No 17,886 (62.21) 15,658 (65.50) 1,016 (36.49)

Yes 8,805 (37.79) 8,247 (34.50) 1,770 (63.51)

Antihypertensive treatment, n (%)
Association between antihypertensive treatment

<0.0001

No 19,368 (72.53) 18,426 (77.08) 934 (33.52)

Yes 7,323 (27.47) 5,479 (22.92) 1,852 (66.48)

(Continued)
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TABLE 1 Continued

Participants’ characteristics Total (n = 26,691) CVDs p-value

No, n = 23,905 Yes, n = 2,786
Glucose-lowering treatment, n (%) <0.0001

No 23,567 (88.30) 21,646 (90.55) 1,921 (68.95)

Yes 3,124 (11.70) 2,259 (9.45) 865 (31.05)

Lipid-lowering treatment, n (%) <0.0001

No 21,671 (81.19) 20,330 (85.04) 1,341 (48.13)

Yes 5,020 (18.81) 3,575 (14.96) 1,445 (51.87)

IQR, interquartile range.

Yang et al. 10.3389/fcvm.2023.1210171
CVDs (826 CHF, 1,039 CHD, 636 angina pectoris, 1,062 heart attack,

and 990 stroke). Comparedwith thosewithout CVDs, participants with

CVDsweremore likely to be older, lacked physical activities, had higher

levels of sedentary time, had higher prevalence of comorbidities, had

more treatment, and had low income (all p < 0.0001). In addition,

participants with CVDs had significantly higher SBP, fasting blood

glucose, triglyceride, CRP and body mass index (BMI) (all p <

0.0001), indicating poor cardiometabolic risk profiles.
3.3. The analyses of U-shaped relationship

As depicted in Figure 4, the results of the semiparametric

regression analysis found a U-shaped association between sleep
FIGURE 4

Smoothing plot for sleep duration and SBP with risks of CVDs by semiparamet
duration (A), SBP (B), and risks of CVDs [The solid line indicates the point estim
confidence intervals (CIs)].
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duration, SBP, and risks of CVDs. This U-shaped relationship

suggested that individuals who sleep for intermediate duration

and had healthier SBP levels were at a lower risk for CVDs. To

better illustrate the relationships between all continuous

variables and CVDs, we plotted the curve in Supplementary

Figure S1.
3.4. Relationship between sleep duration,
SBP, and CVDs by univariate logistic
regression

The performance of logistic regression models for various

estimated cut-points is illustrated in Table 2. The original
ric regression analysis. U-shaped relationships were shown between sleep
ation for ln odds ratios (lnOR) of CVDs, and the dotted lines represent 95%
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TABLE 2 Performance of different estimated cut-points in logistic regression.

Cut-points SBPL (mmHg) SBPU (mmHg) SleepL (h) SleepU (h) ORsBP (95% CI) ORSleep (95% CI) AIC R2 −2 log-
likelihood

Original cut-points 104 110 4.75 9.50 1.19 (1.10–1.30) 1.58 (1.44–1.74) 17,043 0.021 13,636.40

Optimal cut-points 95 120 6.50 8.00 1.59 (1.24–2.06) 1.35 (1.15–1.58) 16,962 0.027 13,579.28

L represents the lower cut-point, and U represents the upper cut-point.

TABLE 3 Multivariable logistic regression for the final model.

Variable OR (95% CI) Wald χ2 p-value

Sex 0.67 (0.56–0.79) 22.48 <0.0001

Ethnicity
Mexican American (ref)

Other Hispanic 1.12 (0.80–1.57) 0.4302 0.5119

Non-Hispanic White 1.68 (1.32–2.14) 17.79 <0.0001

Non-Hispanic Black 1.56 (1.18–2.07) 9.66 0.0019

Other race 1.40 (0.86–2.22) 1.97 0.1608

Income group
Lowest, poverty income ratio ≤1.30 (ref)

Middle, poverty income ratio 1.31–1.85 0.83 (0.65–1.06) 2.15 0.1430

Highest, poverty income ratio ≥1.86 0.71 (0.60–0.85) 14.88 0.0001

Smoking
Never (ref)

Ever 2.01 (1.61–2.49) 39.38 <0.0001

Current 1.38 (1.16–1.65) 12.98 0.0003

Alcohol
Never (ref)

Yang et al. 10.3389/fcvm.2023.1210171
method used to identify cut-points in the semiparametric

regression analysis may not have been accurate. A new

method, the recursive gradient scanning method, was used and

significantly improved the model fitting effect (the new model

had larger value in Nagelkerke R2 and smaller values in AIC

and −2Loglikelihood). Our findings suggested that categorizing

individuals into high-risk and low-risk groups based on the

optimal cut-points of the U-shaped curve may offer a more

precise depiction of the relationships between sleep duration

and the risk of CVDs, as well as between SBP and the risk

of CVDs.

Finally, we chose 6.5 and 8.0 h as optimal cut-points for

sleep duration and chose 95 and 120 mmHg as optimal

cut-points for SBP. Short and long sleep duration [OR = 1.35,

95% confidence interval (CI) = 1.15–1.58] was associated with

a higher risk of CVDs (p < 0.0001). Participants with healthier

SBP levels were at a lower risk for CVDs (OR = 1.59, 95% CI

= 1.24–2.06).

Ever 0.80 (0.62–1.03) 3.12 0.0775

Moderate alcohol 1.06 (0.79–1.44) 0.15 0.6958

Excessive alcohol 1.19 (0.94–1.51) 2.13 0.1445

Physical activity
MET < 600 min/week (ref)

MET≥ 600 min/week 0.77 (0.65–0.90) 10.67 0.0011

Sleep duration
6.5–8.0 h per day (ref)

<6.5 or >8.5 h per day 1.20 (1.04–1.40) 6.06 0.0138

SBP
95–120 mmHg (ref)

<95 or >120 mmHg 1.17 (1.01–1.36) 4.33 0.0375

Fasting blood glucosea, mmol/L 1.06 (1.03–1.09) 16.10 <0.0001

High-density lipoproteina, mmol/L 0.60 (0.48–0.74) 22.23 <0.0001

BMI#, kg/m2 1.04 (1.02–1.05) 35.83 <0.0001
3.5. Logistic regression model results after
adjusting for covariates

As shown in Table 3, after adjustment for other risk factors, the

OR for those with SBP greater than 120 or less than 95 mmHg was

found to be 1.17 times greater than for those with SBP between 95

and 120 mmHg (OR = 1.17, 95% CI = 1.01–1.36; p = 0.0375).

Similarly, individuals who slept more than 8.0 h per day or less

than 6.5 h per day also had a higher risk for CVDs than those

who slept between 6.5 and 8.0 h (OR = 1.20, 95% CI = 1.04–1.40;

p = 0.0138).
aVariables were treated as continuous variable form.

TABLE 4 The predictive capacity and goodness-of-fit among different
methods.

Method AIC AUC Adjusted R2

The recursive gradient scanning method 5,519.389(1) 0.8344(1) 0.27812(1)

Minimum p-value 5,671.354(2) 0.8337(4) 0.27666(4)

Q1–Q3 5,778.388(3) 0.8342(2) 0.27795(3)

Median 6,658.365(4) 0.8341(3) 0.27809(2)

(1)–(4) means to rank according to the priority of the parameters for the model,

and (1) means the highest priority.
3.6. Predictive ability and goodness-of-fit
among different methods

The present study evaluated the predictive capacity of

traditional discretization methods and compared it with an

optimal model using ROC curve analysis. The results showed

that the recursive gradient scanning method has a higher

AUC value of 0.8344, indicating a better predictive capacity

than traditional discretization methods. Moreover, the

adjusted R2 value, which measured how well the model fits

the data, was calculated and found to be 0.27812 for the

recursive gradient scanning method, higher than the other

traditional discretization methods, indicating a better fit of

the model to the data. In addition, the goodness-of-fit index

AIC was evaluated for all the methods. It was found that the
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recursive gradient scanning method had the lowest AIC value

(AIC = 5,519.389), indicating that it provided an ideal

compromise between model complexity and goodness of fit

(Table 4).
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3.7. Association patterns when covariates
included

The following charts illustrated that additional adjustments for

other covariates did not change the majority of our results.

Furthermore, the associations and U-shaped trends between sleep

duration, SBP, and CVD remained similar to our main results

(Supplementary Figure S2).
4. Discussion

In this nationally representative survey of American adults,

among 26,691 participants, 10.44% (sample n = 2,786) of the

total reported having CVDs. This study suggested that a

U-shaped relationship between sleep duration, SBP, and risk of

CVDs, where both extremes of SBP and sleep duration are

associated with an elevated risk of CVDs. Consequently, these

results provide valuable insight into the potential impact of sleep

duration and blood pressure on cardiovascular health.

In medical research, non-monotonic U-shaped dose–response

relationships are increasingly common, and predictive models often

involve multiple non-monotonic independent variables. If such

kinds of explanatory variables are considered directly as candidate

independents with a form of continuous variables in the regression

model, their non-monotonic features may probably make

themselves be eliminated in the followed selection, e.g., a stepwise

selection. Therefore, the corresponding factors cannot be mentioned

in the design of interventions. This study suggests to discretize

factors according to their association with prognosis and to

manifest their importance in assessing prognosis. Our previous

pioneering research has garnered citations from experts in the field,

highlighting the significance of our contributions. These citations

from esteemed colleagues underscore the relevance and impact of

our work, positioning it at the forefront of scholarly discourse. This

recognition encourages us to continue our pursuit of advancing

knowledge and making meaningful contributions to the field.

Unfortunately, there is a limited amount of research on

discretization methods for multiple continuous variables,

particularly in cases where there are U-shaped relationships

between outcomes and explanatory variables. Choosing the

appropriate discretization method is essential to obtain accurate

predictions from statistical models. Therefore, it is critical to

develop effective strategies for discretizing multiple continuous

variables to ensure that these models are reliable and can be used

to guide medical research and clinical decision-making. In this

regard, it is essential to compare the predictive capacity of

traditional discretization methods with optimal models. The results

of our research showed that the recursive gradient scanning

method had a higher AUC and adjusted R2 than other traditional

discretization methods (including median, minimum p-value, and

Q1–Q3), indicating its superior predictive capacity. Moreover, the

goodness-of-fit index AIC remained the minimum for the

recursive gradient scanning method in all the methods, further

highlighting its efficacy in accurately predicting the outcomes of

the statistical models. Overall, the results suggested that the
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recursive gradient scanning method was a promising approach for

discretizing multiple non-monotonic independent variables, with

potential applications in various fields. Further study is needed to

explore the method’s full potential and to compare it with other

emerging discretization techniques, such as Bayesian classification

(36, 37) and decision trees (38, 39).

Our study showed that having high or low SBP levels was

associated with a 17% higher risk of CVDs compared to those with

SBP within 95–120 mmHg intervals. Our study reinforces the

importance of maintaining stable BP levels in managing CVDs.

The concept of a U-shaped association between targeted SBP and

the risk of morbidity and mortality has been long suggested (40).

This hypothesis is based on the assumption of an SBP threshold

for autoregulation of organ blood flow, and the potential role of BP

as a compensatory mechanism for preserving organ function (41).

The observed link between lower SBP and increased risk of

CVDs supports the previous concerns about the intensity of

antihypertensive treatment in older adults (42). Notably, low blood

pressure can not only be harmful in itself but can also indicate poor

health status (43). Even in physically fit individuals, low SBP was

found to be associated with CVDs (44). However, the currently

prevailing paradigm of “the lower, the better” in hypertension

management has been challenged by recent randomized clinical

trials (RCTs). The ACCORD trial involving diabetic patients (45)

revealed that intensive blood pressure lowering (to 120 mmHg SBP)

did not result in a decreased risk of cardiovascular outcomes

compared to the standard therapy group (to 140 mmHg SBP). In

contrast, the link between higher SBP and CVDs has been consistent

in epidemiological studies. According to published studies,

hypertension was found to be linked with a greater proportion of

CVDs when compared to other common risk factors like smoking,

obesity, hypercholesterolemia, and diabetes (46, 47). Taking into

account the overall evidence, adopting a less aggressive treatment

approach may be the optimal approach to manage hypertension

(48). Our study expands upon these findings by showing that

maintaining a stable SBP level is crucial in reducing the risk of CVDs.

Similarly, individuals who slept for more than 8 h or less than

6.5 h had a higher risk for CVDs than those who slept for 6.5–8 h.

The OR for this group was 1.20, indicating that individuals who

sleep beyond the normal range have a 20% higher risk of CVDs

than those who sleep for the recommended duration (6.5–8.0 h).

This finding supported the notion that maintaining optimal sleep

durations were critical in reducing the risk of CVDs. Short sleep

duration has been consistently associated with increased risks of

CVDs in observational studies (6, 49, 50). The pathophysiological

mechanisms underlying this association involve abnormalities in the

sympathetic nervous system, acceleration of arterial stiffening and

atherosclerosis, increased inflammation, and cardiac dysfunction

(5, 51, 52). Recent studies have suggested that extended sleep

duration could improve cardiovascular health, particularly in college

students or prehypertension participants who are often

sleep-deprived (53, 54). Therefore, increasing sleep duration among

individuals with short sleep may be a promising strategy to reduce

the risk of CVDs. On the contrary, some studies have proposed

that a longer duration of sleep is linked to a higher risk of

developing cardiovascular disease and cardiometabolic disease
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(55, 56). Physiological changes that could happen include elevated

blood pressure (57), impaired glucose metabolism (58), and a rise

in cortisol levels (59). Furthermore, there was evidence indicating

that a longer duration of sleep is linked to an increase in carotid

intima-media thickness (60). Therefore, it may be clinically

recommended to advise individuals with prolonged sleep duration

to reduce their sleep time.

The current study has several strengths, including the

utilization of the recursive gradient scanning method to discretize

multiple non-monotonic independent variables. This method

provides valuable insights into the relationship between sleep

duration, SBP, and the risk of CVDs. Another strength is that we

screened multiple influencing factors and then sorted them

according to the size of the OR value, which corresponds to the

risk level of each influencing factor. It will be helpful to indicate

priorities for formulating intervention measures. People at a

greater risk of CVDs may benefit significantly from public health

campaigns promoting good sleep hygiene in the future.

To properly evaluate the outcomes of this study, it is crucial to

recognize several limitations. First of all, the cross-sectional design of

NHANES imposes restrictions on establishing causality or accurately

determining the direction of the relationship. Thus, it is important

to acknowledge the limitations of observational data and the

potential for reverse causation when drawing conclusions about

causality. Whenever possible, randomized trials and prospective

studies can provide more robust evidence for establishing causal

relationships. Second, our understanding of the associations may

have been underestimated due to the absence of information about

the changes over time in sleep duration and SBP, as we only had

baseline assessments of these markers. The approach of utilizing

mean values from short-term repeated BP measurements to assess

CVD risk fails to account for BP variability and inadequately

addresses masked hypertension and white coat hypertension. Instead,

24-h ambulatory blood pressure monitoring (ABPM) provides

continuous readings, capturing natural fluctuations, nighttime levels,

and patterns such as non-dipping. Consideration of a combined

approach involving clinic-based and periodic ABPM may yield a

more comprehensive evaluation of BP dynamics and CVD risk in

certain cases. Third, the study relied solely on self-reported sleep

duration data, which could lead to measurement errors and

potentially impact the precision of the findings. Future research

could benefit from using objective measures of sleep duration, such

as polysomnography or actigraphy, to improve data reliability.

Furthermore, despite careful adjustment for many potential

confounding factors to ensure the validity of the key findings,

residual confounding may still exist due to unmeasured risk factors.

Therefore, additional research is required to replicate these

associations and investigate the mechanisms underlying the results.
5. Conclusion

U-shaped relationships were identified between sleep duration,

BP, and risk of CVDs. Both shorter and longer sleep duration/

higher and lower SBP are significant predictors of CVDs in large

population studies. One should consider duration of sleep and
Frontiers in Cardiovascular Medicine 10
blood pressure control as additional behavioral risk factors that

are heavily influenced by environmental factors and can

potentially be modified through education, counseling, and

public health interventions.
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