539 research outputs found

    Intergrowth and thermoelectric properties in the Bi-Ca-Co-O system

    Full text link
    Single crystals of the Bi-Ca-Co-O system have been grown using the flux method with cooling from 900\celsius and 950\celsius, respectively. The single crystals are characterized by transmission electron microscopy and X-ray diffraction. The misfit cobaltite [Ca2_2Bi1.4_{1.4}Co0.6_{0.6}O4_4]RS^{RS}[CoO2_2]1.69_{1.69} single crystals with quadruple (nn=4) rocksalt (RS) layer are achieved with cooling from 900\celsius. Such crystal exhibits room-temperature thermoelectric power (TEP) of 180μ\muV/K, much larger than that in Sr-based misfit cobaltites with quadruple RS layer. However, intergrowth of single crystals of quadruple (nn=4) and triple (nn=3) RS-type layer-based misfit cobaltites is observed with cooling from 950\celsius. Both of TEP and resistivity were obviously enhanced by the intergrowth compared to [Ca2_2Bi1.4_{1.4}Co0.6_{0.6}O4_4]RS^{RS}[CoO2_2]1.69_{1.69} single crystal, while the power factor at room temperature remains unchanged.Comment: 8 pages, 7 figures. To be published in Journal of Crystal Growt

    Process intensification of BaSO4 nanoparticle preparation with agitation of microbubbles

    Get PDF
    AbstractThis study presents a novel technique for the controllable preparation of BaSO4 nanoparticles via the introduction of microbubbles into the reaction system. A high-concentration system based on barite industry was used, with saturated aqueous Na2SO4 and BaS solutions as the reactants. Microbubbles were generated by a membrane dispersion microreactor. The mixing performance was characterized using parallel competing reactions. The effects of various operation parameters on the nanoparticles were determined, and the reaction conditions were optimized. The results showed that the mixing performance could be improved by introducing microbubbles. The BaSO4 nanoparticles were controllably prepared, with a relatively narrow size distribution. The average particle size could likewise be reduced to approximately 40nm. A dimensionless micromixing scale of the microbubble flow was defined, and a model for predicting the BaSO4 particle size was proposed. The calculated results were consistent with the experimental data

    Microstructures and mechanical properties of as cast Mg‐Zr‐Ca alloys for biomedical applications

    Full text link
    The microstructures and mechanical properties of as cast Mg-Zr-Ca alloys were investigated for potential use in biomedical applications. The Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9 mass-%), Ca (99.9 mass-%) and master Mg-33 mass-%Zr alloy. The microstructures of the alloys were examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the Mg-Zr-Ca alloys with 1 mass-%Ca are composed of one single a phase; these alloys with 2 mass-%Ca consist of both Mg 2Ca and α phase, and all the alloys exhibit typical coarse microstructures. An increase in Zr increases the strength of Mg-Zr-Ca alloys with 1 mass-%Ca, and the formation of Mg2Ca decreases the strength of the alloys. Mg-1Zr-1Ca alloy (mass-%) has the highest strength and best ductility among all the studied alloys

    Unraveling the Rich Fragmentation Dynamics Associated with S-H Bond Fission Following Photoexcitation of H <sub>2</sub>S at Wavelengths ∼129.1 nm

    Get PDF
    H2S is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of H2S molecules to selected rotational (JKaKc′) levels of the 1B1 Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm. Analysis of the total kinetic energy release spectra derived from these data reveals that all levels predissociate to yield H atoms in conjunction with both SH(A) and SH(X) partners and that the primary SH(A)/SH(X) product branching ratio increases steeply with ⟨Jb2⟩, the square of the rotational angular momentum about the b-inertial axis in the excited state. These products arise via competing homogeneous (vibronic) and heterogeneous (Coriolis-induced) predissociation pathways that involve coupling to dissociative potential energy surfaces (PES(s)) of, respectively, 1A″ and 1A′ symmetries. The present data also show H + SH(A) product formation when exciting the JKaKc′ = 000 and 111 levels, for which ⟨Jb2⟩ = 0 and Coriolis coupling to the 1A′ PES(s) is symmetry forbidden, implying the operation of another, hitherto unrecognized, route to forming H + SH(A) products following excitation of H2S at energies above ∼9 eV. These data can be expected to stimulate future ab initio molecular dynamic studies that test, refine, and define the currently inferred predissociation pathways available to photoexcited H2S molecules

    Effective uptake of submicrometre plastics by crop plants via a crack-entry mode

    Get PDF
    Most microplastics are emitted, either directly or via the degradation of plastics, to the terrestrial environment and accumulate in large amounts in soils, representing a potential threat to terrestrial ecosystems. It is very important to evaluate the uptake of microplastics by crop plants because of the ubiquity of microplastics in wastewaters often used for agricultural irrigation worldwide. Here, we analyse the uptake of different microplastics by crop plants (wheat (Triticum aestivum) and lettuce (Lactuca sativa)) from treated wastewater in hydroponic cultures and in sand matrices or a sandy soil. Our results provide evidence in support of submicrometre- and micrometre-sized polystyrene and polymethylmethacrylate particles penetrating the stele of both species using the crack-entry mode at sites of lateral root emergence. This crack-entry pathway and features of the polymeric particles lead to the efficient uptake of submicrometre plastic. The plastic particles were subsequently transported from the roots to the shoots. Higher transpiration rates enhanced the uptake of plastic particles, showing that the transpirational pull was the main driving force of their movement. Our findings shed light on the modes of plastic particle interaction with plants and have implications for crops grown in fields contaminated with wastewater treatment discharges or sewage sludges.The presence of microplastics in wastewaters used for irrigation highlights the urgency of analysing the possible uptake of microplastics by crop plants. This study shows that submicrometre and micrometre plastic particles from treated wastewater enter the steles of crop plants via a crack entry at sites of lateral root emergence.Environmental Biolog

    Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    Get PDF
    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe fluid-structure interaction models of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employ a version of Peskin's immersed boundary (IB) method with a finite element (FE) description of the structural elasticity. We develop both an idealized model of the root with three-fold symmetry of the aortic sinuses and valve leaflets, and a more realistic model that accounts for the differences in the sizes of the left, right, and noncoronary sinuses and corresponding valve cusps. As in earlier work, we use fiber-based models of the valve leaflets, but this study extends earlier IB models of the aortic root by employing incompressible hyperelastic models of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backwards displacement method that determines the unloaded configurations of the root models. Our models yield realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations demonstrate that IB models of the aortic valve are able to produce essentially grid-converged dynamics at practical grid spacings for the high-Reynolds number flows of the aortic root

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
    corecore