541 research outputs found

    Preparation and identification of monoclonal antibodies against humanin

    Get PDF
    To generate and characterize a monoclonal antibody (mAb) against humanin (HN), BALB/c mice were immunized with the purified pet-44a-HN in adjuvant and their splenic lymphocytes were fused with myeloma SP2/0 cells. The hybridoma cell lines were screened for HN-specific antibodies by indirect enzyme-linked immunosorbent assay (ELISA), and anti-HN mAb-producing hybridoma clones were obtained using a limiting dilution assay. The specificity and affinity of the antibodies were characterized by western blot assays and indirect ELISA. Following fusion, screening and cloning, four hybridoma clones were obtained, and the clone 5A8H3 was demonstrated to stably produce anti-HN IgG2a. Further characterization of 5A8H3 revealed that this mAb specifically recognized HN, the fusion proteins of pet- 44a-HN protein and pGEMEX-1-HN, but not control (Escherichia coli proteins). This mAb interacted with HN at an affinity constant (Ka) of 2.0 × 108 M–1 The HN-specific IgG2a mAb was successfully generated. It interacted with HN specifically and sensitively, providing a valuable tool for further study of the biological functions of HN.Key words: Humanin, monoclonal antibodies, characterizatio

    Improvement of the Staggered Fermion Operators

    Get PDF
    We present a complete and detailed derivation of the finite lattice spacing corrections to staggered fermion matrix elements. Expanding upon arguments of Sharpe, we explicitly implement the Symanzik improvement program demonstrating the absence of order aa terms in the Symanzik improved action. We propose a general program to improve fermion operators to remove O(a)O(a) corrections from their matrix elements, and demonstrate this program for the examples of matrix elements of fermion bilinears and BKB_K. We find the former does have O(a)O(a) corrections while the latter does not.Comment: 16 pages, latex, 1 figur

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders

    Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago

    Get PDF
    Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world

    Development of specific PCR assays for the detection of Cryptocaryon irritans

    Get PDF
    Cryptocaryon irritans is one of the most important protozoan pathogens of marine fish, causing the “white spot” disease and posing a significant problem to marine aquaculture. In the present study, a C. irritans-specific reverse primer (S15) was designed based on the published sequence of the second internal transcribed spacer (ITS-2) of ribosomal DNA (rDNA) of C. irritans and used together with the conserved forward primer P1 to develop a specific polymerase chain reaction (PCR) assay for direct, rapid, and specific detection of C. irritans. The specificity of these primers was tested with both closely and distantly related ciliates (Pseudokeroronpsis rubra, Pseudokeroronpsis carnae, Euplotes sp. 1, Ichthyophthirius multifiliis, Pseudourostyla cristata, and Paramecium caudaium), and only C. irritans was detected and no product was amplified from any other ciliates examined in this study using the specific primer set P1-S15. The specific PCR assay was able to detect as low as 45 pg of C. irritans DNA and a nested PCR assay using two primer sets (P1/NC2, P1/S15) increased the sensitivity, allowing the detection of a single C. irritans. The species-specific PCR assays should provide useful tools for the diagnosis, prevention, and molecular epidemiological investigations of C. irritans infection in marine fish

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19

    Get PDF
    Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January–September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7–7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7–10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19–25%), cerebrovascular diseases (24%, 13–35%), nontraumatic intracranial hemorrhage (34%, 20–50%), encephalitis and/or myelitis (37%, 17–60%) and myopathy (72%, 67–77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease

    A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci

    Get PDF
    Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci
    corecore