309 research outputs found

    Options of Intergovernmental Fiscal Relations Reform in the Ukraine

    Get PDF
    Reform of the system of public finance is a key problem in the transformation processes of the Ukraine’s economy. Development of efficient methods of financial policy is especially important in the context of strategic challenges of economic growth, the competitiveness of the national economy, and convergence of the level of socio-economic development between different regions of the country. Most elements of the modern system of the Ukraine’s public finance were formed as far back as during the Soviet era, under the conditions of command and administrative economy, when neither the state budget, nor the local ones played any active role, but were a mere monetary reflection of the plans of socio-economic development. On the other hand, in market economies, public finance plays an important role in the provision of economic growth and efficient use of national economic resources, as well as in the solution of the problems related to social equity.During recent years, the attempt to reform intergovernmental fiscal relations in the Ukraine have failed either to create a well-balanced system for the distribution of powers between central state authorities and local government, or to elaborate adequate and transparent mechanisms for the formation of local budgets. The reason is that most problems of the local budgets are mostly treated by policy makers and local authorities in the context of the need to provide local budgets with “sufficient” financial resources.We emphasize that creation of an efficient budget system is not limited to a mere re-distribution of revenues between central and local budgets. Investigation of theoretic and methodological foundations of the development of the components of the system of public finance and intergovernmental fiscal relations in the Ukraine let us conclude that such development should be based on the use of economic principles and criteria as to the distribution of powers between the central authorities and local government. Furthermore, a consistent fiscal policy is needed, which would promote not only the convergence between the local budgets’ expenditures, but also, and first of all, the regions’ socio-economic development

    Assessing Deep-Pelagic Shrimp Biomass to 3000 m in The Atlantic Ocean and Ramifications of Upscaled Global Biomass

    Get PDF
    We assess the biomass of deep-pelagic shrimps in the Atlantic Ocean using data collected between 40°N and 40°S. Forty-eight stations were sampled in discrete-depth fashion, including epi- (0–200 m), meso- (200–800/1000 m), upper bathy- (800/1000–1500 m), and lower bathypelagic (1500–3000 m) strata. We compared samples collected from the same area on the same night using obliquely towed trawls and large vertically towed nets and found that shrimp catches from the latter were significantly higher. This suggests that vertical nets are more efficient for biomass assessments, and we report these values here. We further compared day and night samples from the same site and found that biomass estimates differed only in the epi- and mesopelagic strata, while estimates from the bathypelagic strata and the total water column were independent of time of day. Maximal shrimp standing stocks occurred in the upper bathypelagic (52–54% of total biomass) and in the mesopelagic (42–43%). We assessed shrimp biomass in three major regions of the Atlantic between 40°N and 40°S, and the first-order extrapolation of these data suggests that the global low-latitude deep-pelagic shrimp biomass (1700 million tons) may lie within the range reported for mesopelagic fishes (estimations between 1000 and 15000 million tons). These data, along with previous fish-biomass estimates, call for the reassessment of the quantity and distribution of nektonic carbon in the deep ocean

    КЛАСТИЧЕСКИЕ ДАЙКИ И ИХ ЗНАЧЕНИЕ ДЛЯ ИЗУЧЕНИЯ ЗЕМЛЕТРЯСЕНИЙ

    Get PDF
    Clastic dikes are often the only evidence of past disasters in poorly exposed areas and therefore their findings are extremely important for earthquake study. However, the variety of their origins greatly complicates the use of clastic dikes to assess the seismic hazards within the manifold environments. This paper systematizes main triggers, formation mechanisms and some matching indicative features of tabular and cylindrical bodies with an emphasis on the importance of revealing the injection dikes formed by fluidized injection of clastic material into the host sedimentary layers (from the bottom upwards) and associated with overpressure buildup and hydraulic fracturing. Based on the revision of known seismic liquefaction features and specific descriptions of the injection dikes, this overview defines 12 general and 12 individual geological and structural criteria (for study in sectional view), which make it possible to establish confidently the earthquake origin of the dikes caused by fluidization from seismic liquefaction. In addition, ground penetrating radar data correlating with trenching suggest indicative searching criteria of the injection dikes on radargrams, namely: a pipe‐shaped anomaly or a composite anomaly combining a tubular form in the lower part with an isometric – in the upper [i]; relatively high values of unipolar positive echoes on the trace of GPR signal [ii]; an occurrence of the same anomaly on adjacent parallel profiles located the first tens of meters apart [iii]; and stratigraphic disruptions of the radar events on the background of their continuous horizontal position [iv]. Finally, the paper illustrates that the clastic dikes can be successfully applied to determine the age and the recurrence interval, the epicenter location and a lower‐bound magnitude/intensity of paleoearthquakes, thus providing geological data for seismic hazard assessments in the regions, in which unconsolidated deposits capable to liquefaction are common.Кластические дайки часто являются единственным свидетельством прошлых стихийных бедствий на слабообнаженных территориях, поэтому их находки исключительно важны, в том числе и для изучения землетрясений. Однако процессы, которые приводят к их формированию, многообразны, что сильно осложняет использование кластических даек для оценки сейсмической опасности в разных окружающих обстановках. Настоящая статья систематизирует главные триггеры, механизмы формирования и некоторые характерные для них признаки пластинообразных и цилиндрических геологических тел с особым акцентом на важность выявления инъекционных даек, образование которых происходит в результате внедрения разжиженного материала снизу вверх в осадочные слои вследствие действия аномально высокого порового дав‐ ления и разрывообразования. На основе ревизии известных признаков сейсмического разжижения и конкретных описаний инъекционных даек сформулировано 12 общих и 12 индивидуальных геолого‐ структурных критериев, применение которых непосредственно на обнажении позволяет достаточно точно установить их происхождение, связанное с землетрясениями, и исключить несейсмогенные триггеры. В дополнение по георадиолокационным данным, заверенным прямыми наблюдениями в канавах, выделено четыре поисковых признака, которые позволяют предварительно идентифицировать инъекционные дайки на радарограммах: трубообразная форма аномалии или сочетание трубообразной формы в нижней части с изо‐ метричной – в верхней [i]; относительно высокие значения однополярных положительных амплитуд сигналов [ii]; наличие одной и той же аномалии на соседних параллельных профилях, расположенных в пределах первых десятков метров друг от друга [iii]; стратиграфические разрывы осей синфазности на фоне их непре‐ рывного субгоризонтального положения (iv). Статья иллюстрирует возможности использования кластических даек для палеосейсмогеологических реконструкций, а именно для определения возраста и интервала повторяемости землетрясений, местоположения эпицентра, минимально возможной магнитуды и макросей‐ смической интенсивности по шкале MSK‐64. Таким образом, кластические дайки могут обеспечивать базовые геологические данные для оценки сейсмической опасности регионов, в которых рыхлые отложения, способные к разжижению, широко распространены

    Global diversity and phylogeny of pelagic shrimps of the former genera <i>Sergestes </i>and <i>Sergia </i>(Crustacea, Dendrobranchiata, Sergestidae), with definition of eight new genera

    Get PDF
    We revise the global diversity of the former genera Sergia and Sergestes which include 71 valid species. The revision is based on examination of more than 37,000 specimens from collections in the Natural History Museum of Denmark and the Museum of Natural History, Paris. We used 72 morphological characters (61 binary, 11 multistate) and Sicyonella antennata as an outgroup for cladistic analysis. There is no support for the genera Sergia and Sergestes as they have been defined until now. We define and diagnose eight genera of the former genus Sergia (Sergia and new genera Gardinerosergia, Phorcosergia, Prehensilosergia, Robustosergia, Scintillosergia, Challengerosergia, and Lucensosergia) and seven genera of the former genus Sergestes (Sergestes, Deosergestes, Eusergestes, Allosergestes, Parasergestes, Neosergestes, and a new genus Cornutosergestes). An identification key is presented for all genera of the family Sergestidae. The phylogeny of Sergestidae is mainly based on three categories of characters related to: (1) general decapod morphology, (2) male copulatory organs, and (3) photophores. Only simultaneous use of all three character types resulted in a resolved tree with minimal Bootstrap support 75 for each clade. Most genera are interzonal mesopelagic migrants, some are benthopelagic (Scintillosergia, Lucensosergia), bathypelagic (Sergia), or epipelagic (Cornutosergestes). Within each of meso- and benthopelagic genera there is one species with panoceanic distribution, while most species ranges are restricted to a single ocean. The genera demonstrate two different strategies expressed both in morphology and behavior: protective (Eusergestes, Sergestes, Cornutosergestes, Prehensilosergia, Scintillosergia, Lucensosergia, Challengerosergia, Gardinerosergia, Robustosergia, Phorcosergia, Sergia) and offensive (Neosergestes, Parasergestes, Allosergestes, Deosergestes)

    The effects of finifibrate in pations with diabetic nephropathy

    Get PDF

    Southern East Siberia Pliocene-Quaternary faults:Database,analysis and inference

    Get PDF
    Abstract This paper presents the first release of an Informational System (IS) devoted to the systematic collection of all available data relating to Pliocene–Quaternary faults in southern East Siberia, their critical analysis and their seismotectonic parameterization. The final goal of this project is to form a new base for improving the assessment of seismic hazard and other natural processes associated with crustal deformation. The presented IS has been exploited to create a relational database of active and conditionally active faults in southern East Siberia (between 100°–114° E and 50°–57° N) whose central sector is characterized by the highly seismic Baikal rift zone. The information within the database for each fault segment is organized as distinct but intercorrelated sections (tables, texts and pictures, etc.) and can be easily visualized as HTML pages in offline browsing. The preliminary version of the database distributed free on disk already highlights the general fault pattern showing that the Holocene and historical activity is quite uniform and dominated by NE–SW and nearly E–W trending faults; the former with a prevailing dip-slip normal kinematics, while the latter structures are left-lateral strike-slip and oblique-slip (with different proportion of left-lateral and normal fault slip components). These faults are mainly concentrated along the borders of the rift basins and are the main sources of moderate-to-strong (M ≥ 5.5) earthquakes on the southern sectors of East Siberia in recent times. As a whole, based on analyzing the diverse fault kinematics and their variable spatial distribution with respect to the overall pattern of the tectonic structures formed and/or activated during the late Pliocene–Quaternary, we conclude they were generated under a regional stress field mainly characterized by a relatively uniform NW–SE tension, but strongly influenced by the irregular hard boundary of the old Siberian craton. The obtained inferences are in an agreement with the existing models of the development of the Baikal region

    N-dimensional electron in a spherical potential: the large-N limit

    Full text link
    We show that the energy levels predicted by a 1/N-expansion method for an N-dimensional Hydrogen atom in a spherical potential are always lower than the exact energy levels but monotonically converge towards their exact eigenstates for higher ordered corrections. The technique allows a systematic approach for quantum many body problems in a confined potential and explains the remarkable agreement of such approximate theories when compared to the exact numerical spectrum.Comment: 8 pages, 1 figur

    ЦИФРОВАЯ КАРТА РАЗЛОМОВ ДЛЯ ПЛИОЦЕН‐ЧЕТВЕРТИЧНОГО ЭТАПА РАЗВИТИЯ ЗЕМНОЙ КОРЫ ЮГА ВОСТОЧНОЙ СИБИРИ И СОПРЕДЕЛЬНОЙ ТЕРРИТОРИИ СЕВЕРНОЙ МОНГОЛИИ

    Get PDF
    Introduction. Studying and mapping of faults in the Earth’s crust is one of the priority objectives in struc‐ tural geology and tectonophysics. Generally, faults are associated with mineral deposits, thermal springs and earth‐ quakes, and fault zones are areas of the most dangerous geological processes and various geophysical anomalies. In this regard, digital maps and databases on faults and fault zones are highly demanded both for science and practical applications. This paper presents a new digital map of the southern East Siberia and the adjacent Northern Mongolia, which shows faults in the crust which were active in the Pliocene‐Quaternary. The map covers the territory between 96–124°E to 49–58°N. An annex to this paper contains files with geospatial data on the mapped faults.The input data, and their synthesis. We consolidated the database on faults active in the Pliocene‐Quaternary stage of the crust development and mapped the faults on the basis of digital elevation models SRTM 90 m [Consortium for Spatial Information, 2004], space images from Landsat series satellites (Google Earth), electronic bathymetry data on Lake Baikal [Sherstyankin et al., 2006], topographic maps (1:200000 scale), regional and global earthquake cata‐ logs, as well as the publications and maps based on the earlier studies of active tectonics and earthquake traces with the use of the ActiveTectonics Information System developed by the research team lead by the author of this paper [Lunina et al., 2014b]. For the major part of the southern East Siberia, we collected and processed our field observa‐ tion data on faults and related deformation features (Fig. 1). The geographic locations of the faults were mapped with the use of MapInfo GIS. The precise detection of tectonic faults, topographically represented by river lineaments and benching, was ensured by the synthesis of cartographic, literature and field materials. A significant number of the detected lineaments, that were not confirmed by any data due to the poor knowledge of some regions in the southern East Siberia and the adjacent territories, are included in the database with a special mark and shown on the map as inferred faults.Results and discussion. The digital map (Fig. 2) shows 1678 faults composed of 2315 segments, including 1097 true, and 1218 inferred ones, identified by the fault strike changes or fragmentation. Using the consolidated fault da‐ tabase, we constructed maps showing fault segments differing in the degree of activity (Fig. 3), displacement types (Fig. 4 and 7), and ages of the last activations (Fig. 8). Besides, we constructed a map of seismically active faults that can generate M≥5.5 earthquakes. The analysis of the thematic maps of faults gives grounds to conclusions that have been either partly supported or controversial, yet now are based on the factual justification of the faults in the Ac‐ tiveTectonics Information System database. It is shown that the Baikal rift zone is bordered in the southwest by the Busiyngol basin and the West Belino‐Busiyngol fault, and in the northeast by the Olyokma and Nyukzha faults located in the basins of the same‐name rivers. In the areas located westward and eastward of these boundaries, the rift re‐ gime (crustal stretching, extension with strike‐slip faulting, and shearing) is abruptly changed to transpression. In general, similar activation features are typical of the southern East Siberia in the Holocene and the present time. Such features include seismogenic activation episodes when mainly the faults of the NE–SW and sublatitudinal strike are renovated – normal faults, left‐lateral normal faults with a strike‐slip component, left‐lateral strike‐slip faults, left‐ lateral strike‐slip faults with a normal component, and left‐lateral strike‐slip faults with a reverse component. The NE‐ striking faults are insignificant to the west of 98° meridian.Conclusion. The digital fault map (Fig. 2) and the thematic maps (Fig. 3, 4, 7, 8 and 9) can be used as a tectonic ba‐ sis for the synthesis of geological, geophysical, hydrogeological and geodetic data in studies aimed at forecasting of hazardous endogenic and exogenic geological processes. The undoubted advantage of this digital fault map over other regional fault maps is its integrated mapping framework that consolidates a large amount of data (collected mostly by the Siberian scientists) in the uniform information space. Newly gathered data can be input in the map’s database that is available for off‐line viewing on html‐pages.Введение. Изучение и картирование разломов земной коры – одна из приоритетных задач структурной геологии и тектонофизики. С разломами связаны месторождения полезных ископаемых, термальные источники и землетрясения. В их зонах наиболее проявлены опасные геологические процессы и различные геофизические аномалии. В связи с этим существует огромная потребность в картах и базах данных разломов, выполненных в цифровом виде и удобных для применения в различных областях. В статье представлены новая карта и база данных разломов для плиоцен‐четвертичного этапа активизации земной коры юга Восточной Сибири и сопредельной территории Северной Монголии в рамках координат 96–124° в.д. и 49–58° с.ш. с возможностью использования геопространственных данных о разломах, прилагаемых к статье в виде дополнительных файлов.Исходные материалы и их синтез. Для составления карты и сопутствующей базы данных разломов, активных на плиоцен‐четвертичном этапе развития земной коры, использованы цифровые модели рельефа SRTM 90 м [Consortium for Spatial Information, 2004], космические снимки со спутников серии «Landsat» (Google Earth), электронная батиметрия оз. Байкал [Sherstyankin et al., 2006], топографические основы масштаба 1:200000, региональный и мировые каталоги землетрясений, а также литературный и картографический материал по предшествующему изучению активной тектоники и следов землетрясений, представленный в информационной системе «ActiveTectonics», разработанной под руководством автора статьи [Lunina et al., 2014b]. Для значительной территории юга Восточной Сибири собраны и обработаны полевые данные о разрывных нарушениях и сопутствующих деформациях (рис. 1). Составление карты на основе ГИС MapInfo обеспечило точную географическую привязку разломов, а синтез различных картографических, литературных и полевых материалов – достоверность выделенных тектонических нарушений, проявляющихся на топоосновах речными линеаментами и уступами. Значительное число выделенных линеаментов, не подтвержденных какими‐либо данными вследствие слабой изученности некоторых участков юга Восточной Сибири и сопредельных территорий, нашли свое отражение на карте в качестве предполагаемых разломов с особой отметкой в базе данных.Результаты и их обсуждение. Цифровая карта на описываемую территорию включает 1678 разломов, состоящих из 2315 сегментов (рис. 2), которые выделяются на основании изменения простирания разлома или его разделения на отдельные фрагменты. Среди разломных сегментов 1097 являются достоверными, 1218 – предполагаемыми. На основе сопутствующей базы данных были построены карты, на которых разломные сегменты разделены по степени активности (рис. 3), типу смещений (рис. 4 и 7) и возрасту последней активизации (рис. 8). Кроме того, составлена карта сейсмоактивных разломов, способных генерировать землетрясения с M≥5.5. Анализ тематических карт разломов позволил сделать ряд заключений, которые отчасти были известны или спорны, но сейчас имеют под собой фактологическую основу в виде обоснования характеристик разломов в базе данных информационной системы «ActiveTectonics». Показано, что юго‐западная граница Байкальской рифтовой зоны проходит вдоль Бусийнгольской впадины и Западного Белино‐Бусийнгольского разлома, северо‐восточная – вдоль Олёкминского и Нюкжинского разломов, расположенных в бассейнах одноименных рек. Западнее и восточнее указанных тектонических границ происходит резкая смена рифтового режима развития, который может характеризоваться растяжением, растяжением со сдвигом и сдвигом (при условии их закономерного соседства в пространстве), на транспрессионный. Для голоцена и настоящего времени для юга Восточной Сибири в целом характерны единые особенности активизации, в том числе и сейсмогенной, когда обновляются преимущественно разломы СВ–ЮЗ и субширотного простирания, к которым относятся сбросы, левые сдвиго‐сбросы, левые сдвиги, левые сбросо‐сдвиги, левые взбросо‐сдвиги. Западнее меридиана 98° северо‐восточные разломы перестают быть значимыми.Заключение. Представленные базовая (рис. 2) и тематические карты (рис. 3, 4, 7–9) разломов в цифровом виде могут быть использованы как тектонические основы для обобщения геологических, геофизических, гидрогеологических и геодезических данных в целях прогнозирования опасных эндогенных и экзогенных геологических процессов. Безусловным преимуществом базовой карты перед другими региональными картами разломов является ее комплексная основа, объединяющая большое количество данных, собранных в основном сибирскими учеными и объединенных в едином информационном пространстве. Карта сопровождается базой данных, которая может пополняться при получении новой информации и просматриваться на html‐страницах в режиме off‐line
    corecore