1,193 research outputs found

    Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Get PDF
    Nucleon electromagnetic form factor data (including recent data) is fitted with models that respect the confinement and asymptotic freedom properties of QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson pole contributions and at high momentum transfer conform to the predictions of perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also include the width of the rho meson and the addition of higher mass vector meson exchanges, but do not evolve into the explicit form of PQCD at high momentum transfer. Different parameterizations of the GK model's hadronic form factors, the effect of including the width of the rho meson and the addition of the next (in mass) isospin 1 vector meson are considered. The quality of fit and the consistency of the parameters select three of the combined HP/GK type models. Projections are made to the higher momentum transfers which are relevant to electron-deuteron experiments. The projections vary little for the preferred models, removing much of the ambiguity in electron-nucleus scattering predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure, minor textual changes; email correspondence to [email protected]

    Electro-Magnetic Nucleon Form Factors and their Spectral Functions in Soliton Models

    Full text link
    It is demonstrated that in simple soliton models essential features of the electro-magnetic nucleon form factors observed over three orders of magnitude in momentum transfer tt are naturally reproduced. The analysis shows that three basic ingredients are required: an extended object, partial coupling to vector mesons, and relativistic recoil corrections. We use for the extended object the standard skyrmion, one vector meson propagator for both isospin channels, and the relativistic boost to the Breit frame. Continuation to timelike tt leads to quite stable results for the spectral functions in the regime from the 2- or 3-pion threshold to about two rho masses. Especially the onset of the continuous part of the spectral functions at threshold can be reliably determined and there are strong analogies to the results imposed on dispersion theoretic approaches by the unitarity constraint.Comment: 24 pages, (RevTeX), 5 PS-figures; Data points in fig.2 and corresponding references added. Final version, to be published in Z.Physik

    Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Full text link
    The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in which the rho, omega, and phi vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently extended to include the width of the rho meson by substituting the result of dispersion relations for the pole and the addition of rho' (1450) isovector vector meson pole. This extended model was shown to produce a good overall fit to all the available nucleon electromagnetic form factor (emff) data. Since then new polarization data shows that the electric to magnetic ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En} data in their range of momentum transfer. The model is further extended to include the omega' (1419) isoscalar vector meson pole. It is found that while this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can fit the new R_p and R_n well simultaneously. An excellent fit to all the remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted. The model predictions are shown up to momentum transfer squared, Q^2, of 8 GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to [email protected] ; minor typos corrected, figures added, conclusions extende

    Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"

    Full text link
    In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that XENON100's upper limits on spin-independent WIMP-nucleon cross sections for WIMP masses below 10 GeV "may be understated by one order of magnitude or more". Having performed a similar, though more detailed analysis prior to the submission of our new result (arXiv:1207.5988), we do not confirm these findings. We point out the rationale for not considering the described effect in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure

    Correlated Strength in Nuclear Spectral Function

    Full text link
    We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory.Comment: 4 pages, 2 figures, accepted by Phys. Rev. Let

    Phenomenology of the Deuteron Electromagnetic Form Factors

    Full text link
    A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in Table

    Inclusive Electron Scattering from Nuclei at x1x \simeq 1

    Get PDF
    The inclusive A(e,e') cross section for x1x \simeq 1 was measured on 2^2H, C, Fe, and Au for momentum transfers Q2Q^2 from 1-7 (GeV/c)2^2. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit ξ\xi-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.Comment: 4 pages, RevTeX; 4 figures (postscript in .tar.Z file

    Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace

    Measurement of Nuclear Transparency for the A(e,e' pi^+) Reaction

    Full text link
    We have measured the nuclear transparency of the A(e,e' pi^+) process in ^{2}H,^{12}C, ^{27}Al, ^{63}Cu and ^{197}Au targets. These measurements were performed at the Jefferson Laboratory over a four momentum transfer squared range Q^2 = 1.1 - 4.7 (GeV/c)^2. The nuclear transparency was extracted as the super-ratio of (σA/σH)(\sigma_A/\sigma_H) from data to a model of pion-electroproduction from nuclei without pi-N final state interactions. The Q^2 and atomic number dependence of the nuclear transparency both show deviations from traditional nuclear physics expectations, and are consistent with calculations that include the quantum chromodynamical phenomenon of color transparency.Comment: 5 pages, 3 figs Changes to figure 2 and 3 (error band updated and theory curves updated
    corecore