929 research outputs found

    The Ideal Intersection Property for Groupoid Graded Rings

    Full text link
    We show that if a groupoid graded ring has a certain nonzero ideal property, then the commutant of the center of the principal component of the ring has the ideal intersection property, that is it intersects nontrivially every nonzero ideal of the ring. Furthermore, we show that for skew groupoid algebras with commutative principal component, the principal component is maximal commutative if and only if it has the ideal intersection property

    The root-soil system of Norway spruce subjected to turning moment: resistance as a function of rotation

    Get PDF
    The reactions of trees to wind, rockfall, and snow and debris flow depend largely on how strong and deformable their anchorage in the soil is. Here, the resistive turning moment M of the root–soil system as a function of the rotation ϕ at the stem base plays the major role. M(ϕ) describes the behavior of the root– soil system when subject to rotational moment, with the maximum M(ϕ) indicating the anchorage strength M a of the tree. We assessed M(ϕ) of 66 Norway spruce (Picea abies L. Karst) by pulling them over with a winch. These 45- to 170-year-old trees grew at sites of low and high elevation, with a diameter at breast height DBH = 14–69 cm and a height H =  9–42 m. M(ϕ) displayed a strong nonlinear behavior. M a was reached at a lower ϕ for large trees than for small trees. Thus overhanging tree weight contributed less to M a for the large trees. Overturning also occurred at a lower ϕ for the large trees. These observations show that the rotational ductility of the root–soil system is higher for small trees. M a could be described by four monovariate linear regression equations of tree weight, stem weight, stem volume and DBH ² ·H (0.80 R ² ϕ at M a, ϕ a, by a power law of DBH²·H (R ² = 0.85). We found significantly higher M a for the low-elevation spruces than for the high-elevation spruces, which were more shallowly anchored, but no significant difference in ϕ a. The 66 curves of M(ϕ), normalized (n) by M a in M-direction and by ϕ a in ϕ-direction, yielded one characteristic average curve: Mn (ϕn) M¯nϕn . Using this average curve and the predictions of M a and ϕ a, it is shown that M(ϕ) and the curves associated with M(ϕ) can be predicted with a relative standard error ≤25%. The parameterization of M(ϕ) by tree size and weight is novel and provides useful information for predicting with finite-element computer models how trees will react to natural hazards

    A new low mass for the Hercules dSph: the end of a common mass scale for the dwarfs?

    Full text link
    We present a new mass estimate for the Hercules dwarf spheroidal galaxy (dSph), based on the revised velocity dispersion obtained by Aden et al. (2009, arXiv:0908.3489). The removal of a significant foreground contamination using newly acquired Stromgren photometry has resulted in a reduced velocity dispersion. Using this new velocity dispersion of 3.72 +/- 0.91 km/s, we find a mass of M_300=1.9^{+1.1}_{-0.8} 10^6 M_sun within the central 300 pc, which is also the half-light radius, and a mass of M_433=3.7_{-1.6}^{+2.2} 10^6 M_sun within the reach of our data to 433 pc, significantly lower than previous estimates. We derive an overall mass-to-light ratio of M_433/L=103^{+83}_{-48} M_sun/L_sun. Our mass estimate calls into question recent claims of a common mass scale for dSph galaxies. Additionally, we find tentative evidence for a velocity gradient in our kinematic data of 16 +/- 3 km/s/kpc, and evidence of an asymmetric extension in the light distribution at about 0.5 kpc. We explore the possibility that these features are due to tidal interactions with the Milky Way. We show that there is a self-consistent model in which Hercules has an assumed tidal radius of r_t = 485 pc, an orbital pericentre of r_p = 18.5 +/- 5 kpc, and a mass within r_t of M_{tid,r_t}=5.2 +/- 2.7 10^6 M_sun. Proper motions are required to test this model. Although we cannot exclude models in which Hercules contains no dark matter, we argue that Hercules is more likely to be a dark matter dominated system which is currently experiencing some tidal disturbance of its outer parts.Comment: 10 pages, 3 figures, Accepted for publication by ApJ

    Early search for supersymmetric dark matter models at the LHC without missing energy

    Full text link
    We investigate early discovery signals for supersymmetry at the Large Hadron Collider without using information about missing transverse energy. Instead we use cuts on the number of jets and isolated leptons (electrons and/or muons). We work with minimal supersymmetric extensions of the standard model, and focus on phenomenological models that give a relic density of dark matter compatible with the WMAP measurements. An important model property for early discovery is the presence of light sleptons, and we find that for an integrated luminosity of only 200--300 pb1^{-1} at a center-of-mass energy of 10 TeV models with gluino masses up to 700\sim 700 GeV can be tested.Comment: 28 pages, 12 figures; published versio

    Adsorption of Fibrinogen on Thin Oriented Poly(Tetrafluoroethylene) (PTFE) Fibres Studied by Scanning Force Microscopy

    Get PDF
    We have investigated fibrinogen adsorption on ordered poly(tetrafluoroethylene), PTFE, fibres deposited on hydrophilic and hydrophobic silicon substrates. Fibrinogen molecules appear to adsorb with their long axis perpendicular to the fibre direction for PTFE fibres having widths of less than 100 nm. On these thin fibres, fibrinogen apparently forms close packed bands or clusters, consisting of small integer numbers of molecules arranged parallel to each other. On broader (\u3e 100 nm) PTFE fibres, the fibrinogen forms two dimensional networks. The orientation of the molecules in these networks is random in the central flat part of the fibres but perpendicular to the fibre direction at the fibre edges. As a tentative explanation, we propose that the observed orientation may be linked to the radius of curvature of the fibre surface

    Work disability before and after a major cardiovascular event: a ten-year study using nationwide medical and insurance registers

    Get PDF
    We examined the trajectories of work disability before and after IHD and stroke events. New IHD (n = 13521) and stroke (n = 7162) cases in 2006-2008 were retrieved from nationwide Swedish hospital records and their annual work disability days five years before and after the date of diagnosis were retrieved from a nationwide disability register. There was no pre-event differences in disability days between the IHD and stroke cases and five years prior to the event, they were close to those observed in the general population. In the first post-event year, the adjusted mean days increased to 83.9 (95% CI 80.6-86.5) in IHD; to 179.5 (95% CI 172.4-186.8) in stroke, a six-fold increase in IHD and 14-fold in stroke. Work disability leveled off among the IHD cases but not among those who had stroke. The highest disability levels for the fifth post-event year after a stroke event was associated with pre-existing diabetes (146.9), mental disorder (141.2), non-employment (137.0), and immigrant status (117.9). In a working-age population, the increase in work disability after a cardiovascular event decreases close to the pre-event level in IHD but remains particularly high after stroke; among patients with comorbid depression or diabetes, immigrants, and those not in employment

    Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research

    Get PDF
    Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem

    Neutralino Dark Matter in BMSSM Effective Theory

    Full text link
    We study thermal neutralino dark matter in an effective field theory extension of the MSSM, called "Beyond the MSSM" (BMSSM) in Dine, Seiberg and Thomas (2007). In this class of effective field theories, the field content of the MSSM is unchanged, but the little hierarchy problem is alleviated by allowing small corrections to the Higgs/higgsino part of the Lagrangian. We perform parameter scans and compute the dark matter relic density. The light Higgsino LSP scenario is modified the most; we find new regions of parameter space compared to the standard MSSM. This involves interesting interplay between the WMAP dark matter bounds and the LEP chargino bound. We also find some changes for gaugino LSPs, partly due to annihilation through a Higgs resonance, and partly due to coannihilation with light stops in models that are ruled in by the new effective terms.Comment: 37 pages + appendi

    Development of new all-optical signal regeneration technique

    Get PDF
    All-optical signal regeneration have been the active research area since last decade due to evolution of nonlinear optical signal processing. Existing all-optical signal regeneration techniques are agitated in producing low Bit Error Rate (BER) of 10-10 at below than -10 dBm power received. In this paper, a new all-optical signal regeneration technique is developed by using phase sensitive amplification and designed optical phase locked signal mechanism. The developed all-optical signal regeneration technique is tested for different 10 Gb/s Differential Phase Shift Keying degraded signals. It is determined that the designed all-optical signal regeneration technique is able to provide signal regeneration with noise mitigation for degraded signals. It is analyzed that overall, for all degraded test signals, average BER of 10-13 is achieved at received power of -14 dBm. The designed technique will be helpful to enhance the performance of existing signal regeneration systems in the presence of severe noise by providing minimum BER at low received power
    corecore