Abstract

We show that if a groupoid graded ring has a certain nonzero ideal property, then the commutant of the center of the principal component of the ring has the ideal intersection property, that is it intersects nontrivially every nonzero ideal of the ring. Furthermore, we show that for skew groupoid algebras with commutative principal component, the principal component is maximal commutative if and only if it has the ideal intersection property

    Similar works