19 research outputs found

    Lumican accumulates with fibrillar collagen in fibrosis in hypertrophic cardiomyopathy

    Get PDF
    Aims Familial hypertrophic cardiomyopathy (HCM) is the most common form of inherited cardiac disease. It is characterized by myocardial hypertrophy and diastolic dysfunction, and can lead to severe heart failure, arrhythmias, and sudden cardiac death. Cardiac fibrosis, defined by excessive accumulation of extracellular matrix (ECM) components, is central to the pathophysiology of HCM. The ECM proteoglycan lumican is increased during heart failure and cardiac fibrosis, including HCM, yet its role in HCM remains unknown. We provide an in-depth assessment of lumican in clinical and experimental HCM. Methods Left ventricular (LV) myectomy specimens were collected from patients with hypertrophic obstructive cardiomyopathy (n = 15), and controls from hearts deemed unsuitable for transplantation (n = 8). Hearts were harvested from a mouse model of HCM; Myh6 R403Q mice administered cyclosporine A and wild-type littermates (n = 8–10). LV tissues were analysed for mRNA and protein expression. Patient myectomy or mouse mid-ventricular sections were imaged using confocal microscopy, direct stochastic optical reconstruction microscopy (dSTORM), or electron microscopy. Human foetal cardiac fibroblasts (hfCFBs) were treated with recombinant human lumican (n = 3) and examined using confocal microscopy. Results Lumican mRNA was increased threefold in HCM patients (P 2 = 0.60, P 2 = 0.58, P < 0.01). Lumican protein was increased by 40% in patients with HCM (P 2 = 0.28, P = 0.05) and interstitial (R2 = 0.30, P < 0.05) fibrosis. In mice with HCM, lumican mRNA increased fourfold (P < 0.001), and lumican protein increased 20-fold (P < 0.001) in insoluble ECM lysates. Lumican and fibrillar collagen were located together throughout fibrotic areas in HCM patient tissue, with increased co-localization measured in patients and mice with HCM (patients: +19%, P < 0.01; mice: +13%, P < 0.01). dSTORM super-resolution microscopy was utilized to image interstitial ECM which had yet to undergo overt fibrotic remodelling. In these interstitial areas, collagen I deposits located closer to ( 15 nm, P < 0.05), overlapped more frequently with (+7.3%, P < 0.05) and to a larger degree with (+5.6%, P < 0.05) lumican in HCM. Collagen fibrils in such deposits were visualized using electron microscopy. The effect of lumican on collagen fibre formation was demonstrated by adding lumican to hfCFB cultures, resulting in thicker (+53.8 nm, P < 0.001), longer (+345.9 nm, P < 0.001), and fewer ( 8.9%, P < 0.001) collagen fibres. Conclusions The ECM proteoglycan lumican is increased in HCM and co-localizes with fibrillar collagen throughout areas of fibrosis in HCM. Our data suggest that lumican may promote formation of thicker collagen fibres in HCM

    Regulation of adult muscle phenotype by PPARdelta

    Get PDF
    A unique characteristic of skeletal muscle is its diversity, reflected in the fibre type composition of muscles and in the heterogeneity of different fibre types. Mammalian skeletal muscle has a remarkable capacity to accommodate to new functional demands, and a high degree of molecular variability is involved in the phenotypic determination of fibre structure, metabolism and contractility. Although this adaptive potential is well established, the signalling pathways linking muscle activity to expression of muscle specific genes, the excitation-transcription coupling, is poorly understood. This work presents peroxisome proliferator-activated receptor ä (PPARä) as a possible mediator in the signalling network regulating metabolic and contractile properties of adult skeletal muscle fibres. PPARs are fatty acid activated transcription factors playing important regulatory roles in development and metabolism. PPARä is known to regulate â-oxidation of fatty acids in muscle and adipose tissue, but has recently also been implicated in the excitation-transcription coupling by studies in transgenic animals. The aim of this work was to investigate wild type expression patterns of PPARä and effects of an active PPARä in skeletal muscles of adult rats, in order to elucidate a possible role for PPARä in adult muscle adaptation. In this gain-of-function study, a transgene encoding an intrinsically active fusion protein of a VP16 activation domain and PPARä (VP16-PPARä) was transfected into the “fast” extensor digitorum longus (EDL) muscle of rat by in vivo electroporation. Succinate dehydrogenase (SDH) activity, cross sectional area (CSA) and myosin heavy chain (MyHC) fibre type distribution among the transfected fibres were analysed, and compared to sham transfected and normal controls. In the second part of this study, expression patterns of the wild type PPARä protein were analysed by immunohistochemistry in normal, untreated soleus and EDL muscles. Overexpression of an active PPARä in EDL muscle fibres of adult rats resulted in reductions of CSAs and increased SDH activity levels, followed by changes in MyHC expression in slow direction. Immunohistochemical data from normal muscles indicated higher levels of PPARä in nuclei of slow/oxidative fibres than in fast/glycolytic fibres, which had higher cytosolic levels. These results support the hypothesis of a role for PPARä in maintaining and transforming muscle fibres in the slow/oxidative direction, for example during endurance training, but also indicate nuclear translocation as a new level of regulation

    A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice

    No full text
    Aims Generation of reproducible cardiac disease phenotypes in mice is instrumental for investigating mechanisms leading to heart failure (HF). For decades, suture-based thoracic aortic constriction has been the preferred method for increasing left ventricular (LV) afterload in rodents, but the degree of stenosis resulting from this method is variable. In an effort to improve this methodology, we subjected mice to constriction of the ascending aorta using o-rings with fixed inner diameters (IDs). Methods and results Mice of C57BL/6J and FVB/N background were subjected to constriction of the ascending aorta using o-rings with fixed IDs of 0.71, 0.66, and 0.61 mm. O-ring aortic banding resulted in 98.7% survival 2 weeks post-surgery, with very low intra- and inter-surgeon variation. When using the narrowest o-ring (0.61 mm), mice developed hypertrophy within 1 week. Over 20 weeks, the mice gradually developed reduced LV ejection fraction (LVEF) and dilatation with increased left atrial dimensions and lung weight, indicating congestion. When using o-rings with IDs of 0.66 mm and 0.71 mm, the mice developed hypertrophy, but maintained a compensated state with stabilized LVEF 8–20 weeks post-surgery. The up-regulation of signature genes associated with HF, hypertrophy, fibrosis, and the level of activation of MAPK and NFAT signalling pathways corresponded to the degree of stenosis. Conclusion Here, we introduce a novel method for high precision aortic constriction in mice with high intra- and inter-surgeon reproducibility and low post-operative mortality that allows generation of specific cardiac disease phenotypes

    Exercise training increases protein O-GlcNAcylation in rat skeletal muscle

    No full text
    Protein O‐GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O‐GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O‐GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O‐GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O‐GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O‐GlcNAc transferase (OGT), O‐GlcNAcase (OGA), and glutamine fructose‐6‐phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O‐GlcNAcylation in rat soleus and EDL. There was a striking increase in O‐GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O‐GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O‐GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O‐GlcNAcylation level, indicating that aberrant O‐GlcNAcylation cannot explain the skeletal muscle dysfunction in HF. Human skeletal muscle displayed extensive protein O‐GlcNAcylation that by large mirrored the fiber‐type‐related O‐GlcNAcylation pattern in rats, suggesting O‐GlcNAcylation as an important signaling system also in human skeletal muscle

    Shedding of syndecan-4 promotes immune cell recruitment and mitigates cardiac dysfunction after lipopolysaccharide challenge in mice

    No full text
    Inflammation is central to heart failure progression. Innate immune signaling increases expression of the transmembrane proteoglycan syndecan-4 in cardiac myocytes and fibroblasts, followed by shedding of its ectodomain. Circulating shed syndecan-4 is increased in heart failure patients, however the pathophysiological and molecular consequences associated with syndecan-4 shedding remain poorly understood. Here we used lipopolysaccharide (LPS) challenge to investigate the effects of syndecan-4 shedding in the heart. Wild-type mice (10 mg/kg, 9 h) and cultured neonatal rat cardiomyocytes and fibroblasts were subjected to LPS challenge. LPS increased cardiac syndecan-4 mRNA without altering full-length protein. Elevated levels of shedding fragments in the myocardium and blood from the heart confirmed syndecan-4 shedding in vivo. A parallel upregulation of ADAMTS1, ADAMTS4 and MMP9 mRNA suggested these shedding enzymes to be involved. Echocardiography revealed reduced ejection fraction, diastolic tissue velocity and prolonged QRS duration in mice unable to shed syndecan-4 (syndecan-4 KO) after LPS challenge. In line with syndecan-4 shedding promoting immune cell recruitment, expression of immune cell markers (CD8, CD11a, F4/80) and adhesion receptors (Icam1, Vcam1) were attenuated in syndecan-4 KO hearts after LPS. Cardiomyocytes and fibroblasts exposed to shed heparan sulfate-substituted syndecan-4 ectodomains showed increased Icam1, Vcam1, TNFα and IL-1β expression and NF-κB-activation, suggesting direct regulation of immune cell recruitment pathways. In cardiac fibroblasts, shed ectodomains regulated expression of extracellular matrix constituents associated with collagen synthesis, cross-linking and turnover. Higher syndecan-4 levels in the coronary sinus vs. the radial artery of open heart surgery patients suggested that syndecan-4 is shed from the human heart. Our data demonstrate that shedding of syndecan-4 ectodomains is part of the cardiac innate immune response, promoting immune cell recruitment, extracellular matrix remodeling and mitigating cardiac dysfunction in response to LPS

    Molecular Basis of Calpain Cleavage and Inactivation of the Sodium-Calcium Exchanger 1 in Heart Failure

    No full text
    Cardiac sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is central to the maintenance of normal Ca2+ homeostasis and contraction. Studies indicate that the Ca2+-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca2+ binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met369 antibody identified a novel calpain cleavage site at Met369. Engineering NCX1-Met369 into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met369 inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met369 cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction

    The extracellular matrix proteoglycan lumican improves survival and counteracts cardiac dilatation and failure in mice subjected to pressure overload

    No full text
    Left ventricular (LV) dilatation is a key step in transition to heart failure (HF) in response to pressure overload. Cardiac extracellular matrix (ECM) contains fibrillar collagens and proteoglycans, important for maintaining tissue integrity. Alterations in collagen production and cross-linking are associated with cardiac LV dilatation and HF. Lumican (LUM) is a collagen binding proteoglycan with increased expression in hearts of patients and mice with HF, however, its role in cardiac function remains poorly understood. To examine the role of LUM in pressure overload induced cardiac remodeling, we subjected LUM knock-out (LUMKO) mice to aortic banding (AB) and treated cultured cardiac fibroblasts (CFB) with LUM. LUMKO mice exhibited increased mortality 1–14 days post-AB. Echocardiography revealed increased LV dilatation, altered hypertrophic remodeling and exacerbated contractile dysfunction in surviving LUMKO 1–10w post-AB. LUMKO hearts showed reduced collagen expression and cross-linking post-AB. Transcriptional profiling of LUMKO hearts by RNA sequencing revealed 714 differentially expressed transcripts, with enrichment of cardiotoxicity, ECM and inflammatory pathways. CFB treated with LUM showed increased mRNAs for markers of myofibroblast differentiation, proliferation and expression of ECM molecules important for fibrosis, including collagens and collagen cross-linking enzyme lysyl oxidase. In conclusion, we report the novel finding that lack of LUM attenuates collagen cross-linking in the pressure-overloaded heart, leading to increased mortality, dilatation and contractile dysfunction in mice
    corecore