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ABSTRACT 

A unique characteristic of skeletal muscle is its diversity, reflected in the fibre type 

composition of muscles and in the heterogeneity of different fibre types. Mammalian skeletal 

muscle has a remarkable capacity to accommodate to new functional demands, and a high 

degree of molecular variability is involved in the phenotypic determination of fibre structure, 

metabolism and contractility. Although this adaptive potential is well established, the 

signalling pathways linking muscle activity to expression of muscle specific genes, the 

excitation-transcription coupling, is poorly understood.   

This work presents peroxisome proliferator-activated receptor δ (PPARδ) as a possible 

mediator in the signalling network regulating metabolic and contractile properties of adult 

skeletal muscle fibres.   

PPARs are fatty acid activated transcription factors playing important regulatory roles 

in development and metabolism. PPARδ is known to regulate β-oxidation of fatty acids in 

muscle and adipose tissue, but has recently also been implicated in the excitation-transcription 

coupling by studies in transgenic animals. The aim of this work was to investigate wild type 

expression patterns of PPARδ and effects of an active PPARδ in skeletal muscles of adult 

rats, in order to elucidate a possible role for PPARδ in adult muscle adaptation.  

In this gain-of-function study, a transgene encoding an intrinsically active fusion 

protein of a VP16 activation domain and PPARδ (VP16-PPARδ) was transfected into the 

“fast” extensor digitorum longus (EDL) muscle of rat by in vivo electroporation. Succinate 

dehydrogenase (SDH) activity, cross sectional area (CSA) and myosin heavy chain (MyHC) 

fibre type distribution among the transfected fibres were analysed, and compared to sham 

transfected and normal controls. In the second part of this study, expression patterns of the 

wild type PPARδ protein were analysed by immunohistochemistry in normal, untreated soleus 

and EDL muscles.  

Overexpression of an active PPARδ in EDL muscle fibres of adult rats resulted in 

reductions of CSAs and increased SDH activity levels, followed by changes in MyHC 

expression in slow direction. Immunohistochemical data from normal muscles indicated 

higher levels of PPARδ in nuclei of slow/oxidative fibres than in fast/glycolytic fibres, which 

had higher cytosolic levels. These results support the hypothesis of a role for PPARδ in 

maintaining and transforming muscle fibres in the slow/oxidative direction, for example 

during endurance training, but also indicate nuclear translocation as a new level of regulation.  
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1 INTRODUCTION 

The mammalian skeletal muscle is a dynamic system responding to environmental 

stimuli and has a remarkable capacity to accommodate to new functional requirements. The 

diversity of muscle fibres reflects this functional flexibility and is related to a high degree of 

molecular variability involved in the determination of fibre structure, metabolism and 

contractility. The phenotypic profile of a muscle fibre is ultimately determined by 

transcription of muscle specific genes, controlled mainly by the electrical activity pattern in 

the motor neuron. In the adaptive response to altered nervous activity, the expression pattern 

of contractile and metabolic genes may be modulated, resulting in changes in the phenotypic 

profile of individual fibres. However, the signalling pathways linking muscle activity to gene 

transcription are poorly understood, although extensively studied.   

This master thesis presents peroxisome proliferator-activated receptor δ (PPARδ) as a 

possible mediator of metabolic and contractile adaptations of adult skeletal muscle fibres.  

1.1 Muscle fibre phenotypes 

Skeletal muscles are heterogeneous and consist of structurally and metabolically 

distinct fibre phenotypes. The composition of fibre phenotypes in a muscle is mainly a 

reflection of the electrical activity patterns of the motor neurons innervating the muscle, in 

addition to embryonic origin, mechanical loading, hormonal influence and aging (Pette & 

Staron, 2000). The molecular diversity of fibre phenotypes is related to the existence of 

multiple isoforms of proteins involved in contractile and metabolic mechanisms. 

Mammalian muscle fibres are often classified according to two major functional 

characteristics: speed of contraction and aerobic/oxidative or anaerobic/glycolytic production 

of ATP. Skeletal muscle diversity was realized as early as 1873 when “white” muscles were 

distinguished from “red” (Ranvier, 1873). Further descriptions of the differences between 

individual muscle fibres emerged in the following years, and a century later skeletal muscle 

fibres were divided into three discrete categories based on the pH stability of the myosin 

ATPase (mATPase): “slow”/oxidative type I, “fast”/oxidative/glycolytic type IIa and 

“fast”/glycolytic type IIb (Brooke & Kaiser, 1970). Yet another contemporary approach of 

fibre typing was based upon reference enzymes of aerobic and anaerobic energy metabolism, 

also resulting in the identification of three major fibre types: “slow” twitch oxidative, “fast” 

twitch oxidative/glycolytic and “fast” twitch glycolytic (Barnard et al., 1971). These 
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metabolic properties were associated with type I and type II mATPase activity and fatigability 

(Edström & Kugelberg, 1968).  

The myosin molecule consists of two heavy chains (MyHCs) and four light chains 

(MyLCs), all influencing on contractile properties of muscle fibres. In the 1980s, the 

expression of MyHC isoform of individual fibres was shown to correlate with maximum 

velocity of shortening (Reiser et al., 1985), identifying MyHC fibre types I, IIa and IIb. With 

the development of immunohistochemical techniques and monoclonal anti-MyHC antibodies, 

Schiaffino et al. (1989) discovered a fourth adult mammalian fibre type, the IIx fibre, 

expressing MyHC isotype IIx. The IIx fibre was characterised as an intermediate between IIa 

and IIb fibres in terms of ATPase activity, speed of contraction, metabolic profile and fatigue 

resistance. 11 different MyHC isoforms encoded by separate genes have been identified in 

adult mammalian muscles (Pette & Staron, 2000). Normally, adult muscle fibres express only 

one of these MyHC genes, and MyHC profile is currently the most widely used method for 

classification of skeletal muscle fibre types.  

The MyHC protein exists in four isoforms in limb muscles of adult rodents; type Iβ, 

IIa, IIx and IIb (table 1.1), while slow type Iβ and fast type IIa and IIx are expressed in human 

limb muscles (Smerdu et al., 1994). In general terms, slow type I fibres have the slowest 

speed of contraction due to slow hydrolysis of ATP during cross-bridge cycling, and the best 

endurance due to high concentrations of mitochondria and oxidative enzymes, ensuring stable 

and long-term supply of ATP when oxygen is present. Fast type IIb fibres, on the other hand, 

have the highest speed of contraction and the poorest endurance due to low concentrations of 

mitochondria and high concentrations of glycogen and glycolytic enzymes, serving as a fast, 

but short lasting, oxygen independent source of ATP (Schiaffino & Reggiani, 1994). Fibre 

types IIa and IIx show intermediate physiological properties, as shown in table 1.1.  

Nevertheless, none of these fibre types are completely discrete from one another, 

whether criteria are based on physiological or biochemical characteristics. Hybrid fibre 

populations, co-expressing two MyHC isoforms, exist, namely type I/IIa, IIa/IIx and IIx/IIb 

fibres (Pette & Staron, 1990; Schiaffino & Reggiani, 1994). These generally show 

intermediate physiological properties, lying between their respective “pure” MyHC fibre 

types, thus reflecting a continuum of contraction speeds (Rivero et al., 1998). The metabolic 

activity and fatigue resistance of muscle fibres also show high amounts of overlap rather than 

distinct levels representing each MyHC fibre type. However, significant differences in mean 

values of enzymatic activity are observed and can be used to separate different fibre types, 
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although pronounced variations may exist between species, different muscles and even within 

groups of fibres of the same type. 

Table 1.1 Overview of MyHC expression and physical properties of different fibre types of limb skeletal 

muscles of adult rodents 

Fibre type: MyHC: Speed of contraction: Metabolic profile: Endurance: 

I MyHC Iβ Slow Oxidative Good 

IIa MyHC IIa Fast Oxidative-glycolytic Good-Medium 

IIx MyHC IIx Faster Glycolytic-oxidative Medium-Poor 

IIb MyHC IIb Fastest Glycolytic Poor 

Muscle fibre types are determined according to MyHC expression. MyHC expression defines the speed of 

contraction of individual fibres, while the metabolic profile defines endurance.  

1.2 Plasticity of muscle fibre phenotypes 

 Multiple mechanisms regulate muscle fibre diversification and MyHC gene expression 

during development. The phenotype of adult muscle fibres can, however, be further 

modulated in adaptive responses to changes in nerve activity, mechanical loading and 

unloading, hormonal status and aging (Pette & Vrbova, 1985; Pette & Staron, 1997; 

Gundersen, 1998; Mercier et al., 1999; Pette & Staron, 2000). These adaptive responses can 

be quite dramatic and occur in fully differentiated fibres, without prior cell death and 

regeneration (Gorza et al., 1988). Changes in MyHC isoform expression tend to follow a 

general scheme of sequential and reversible transitions from fast to slow and slow to fast: 

MyHC 1β ↔ MyHC IIa ↔ MyHC IIx ↔ MyHC IIb, and transformations often include stages 

with an increased percentage of hybrid fibres (Pette & Staron, 1997; Windisch et al., 1998; 

Pette & Staron, 2000). 

Some hormones have profound effect on muscle phenotype. Although testosterone 

may contribute to differences in relative concentrations of MyHC in muscles of males and 

females (Staron et al., 2000), thyroid hormones appear to have the strongest hormonal 

influence on adult muscle phenotypes. Hypothyroidism causes fast to slow MyHC transitions 

while hyperthyroidism elicits transitions in fast direction (Pette & Staron, 1997).  

Stretch, mechanical loading (Pattullo et al., 1992) and aging (Larsson & Ansved, 

1995) cause fast to slow MyHC transitions in muscle fibres, while mechanical unloading 

induces a faster phenotype with an increased expression of fast MyHC isoforms (Pette & 

Staron, 1997, 2000).  
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 The pattern of neuromuscular activity is the primary determinant of phenotypic gene 

expression during development and in adult muscle fibres (Pette & Vrbova, 1985; Gundersen 

& Eken, 1992). The impact of neural activity has been demonstrated in denervation 

experiments showing that in the absence of innervation, slow muscles become faster, and vice 

versa (Gutmann et al., 1972). A cross-reinnervation model demonstrated that fast muscles 

turn slow when reinnervated by a slow nerve, and slow muscles turn fast when reinnervated 

by a fast nerve, following initial denervation (Buller et al., 1960; Pette & Vrbova, 1985). 

These phenotypic changes relate to the specific patterns of electrical impulses generated by 

the motor neurons (Lømo et al., 1974). Denervation and direct stimulation of the slow soleus 

(SOL) muscle with a fast electrical stimulation pattern (phasic, high-frequency) using 

implanted electrodes, resulted in slow to fast transformation (Gorza et al., 1988; Ausoni et al., 

1990; Windisch et al., 1998), whereas a slow electrical stimulation pattern (chronic, low-

frequency) imposed on the denervated fast extensor digitorum longus (EDL) muscle induced 

fast to slow transformation (Eken & Gundersen, 1988; Ausoni et al., 1990; Schiaffino et al., 

1999).  

Muscle inactivity or decreased activity tends to shift MyHC expression of muscle 

fibres in the fast direction and reduces their cross sectional areas (atrophy). Increased activity 

and functional overload, on the other hand, promote changes in the slow, oxidative direction 

(Pette & Staron, 2000).   

 Resistance training is characterized by phasic high-frequency muscle activity. In 

humans, resistance training has been shown to induce a decrease in type IIx fibres with a 

following increase in type IIa, whereas in rat the decrease in type IIb is followed by an 

increase in type IIx fibres (Andersen et al., 2000; Spangenburg & Booth, 2003). At the same 

time, production of proteins and cross sectional areas of the muscle fibres were increased 

(hypertrophy) (McCall et al., 1996). 

Endurance training is characterized by prolonged low-frequency muscle activity and 

frequently increases the oxidative metabolism of skeletal muscles (Baldwin et al., 1972; Fitts 

et al., 1975; Holloszy & Booth, 1976; Dudley et al., 1982; Carter et al., 2001; Koulmann & 

Bigard, 2006). Endurance training may under extreme conditions induce fast to slow MyHC 

transitions of muscle fibres depending on the intensity, duration and type of training 

(Andersen & Henriksson, 1977; Baumann et al., 1987; Fitzsimons et al., 1990; Sullivan et al., 

1995; Demirel et al., 1999; Andersen et al., 2000; Allen et al., 2001). Chronic low-frequency 

electrical stimulation of muscles using implanted electrodes imitates this type of muscular 

activity, and has been shown to promote similar fast to slow transitions in skeletal muscle 
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(Pette & Vrbova, 1985; Eken & Gundersen, 1988; Ausoni et al., 1990; Pette & Staron, 1997; 

Schiaffino et al., 1999). Although these adaptations to muscle activity are observed, the 

signalling pathways linking muscle excitation to expression of contractile and metabolic 

genes, are just beginning to be understood.  

1.3 Signalling pathways involved in plasticity of muscle fibre phenotypes 

 Fibre type transformations not only involve changes in MyHC expression, but include 

changes in the expression of a multitude of contractile and metabolic proteins. Consequently, 

fibre type transformation and maintenance represent highly coordinated regulations of 

transcription, translation and post-translational modifications. Even so, published literature 

suggests that the phenotype of muscle fibres is regulated by multiple signalling pathways 

rather than a “master” switch or a “master” signalling pathway (Spangenburg & Booth, 2003; 

Koulmann & Bigard, 2006). A possible model of the excitation-transcription coupling based 

on existing literature is presented in figure 1.1.  

 The role of calcineurin (CaN) in muscle adaptation has been a subject of intensive 

investigation. CaN is a serine/threonine phosphatase consisting of a catalytic and a regulatory 

subunit and is a major mediator of Ca2+ signalling in different cell systems. When activated 

by binding of Ca2+ to calmodulin (CaM), CaN affects expression of target genes by 

dephosphorylation of substrates, among them the nuclear factor of activated T cells (NFAT) 

gene family, originally identified in T and B lymphocytes. Dephosphorylated NFATs 

translocate to the nucleus and bind to promoter regions of target genes (Rao et al., 1997). 

Since CaN is activated by Ca2+-CaM, intracellular concentration of Ca2+ ([Ca2+]i) is a major 

determinant of CaN action and hence the expression of its target genes.  

 Chin et al. (1998) found that a CaN dependent transcriptional signalling pathway 

selectively up-regulated slow-specific gene promoters in cultured myocytes and in mature 

muscle cells of intact animals, by involvement of proteins from the NFAT and the myocyte 

enhancer factor 2 (MEF2) families. Their hypothesis was originally based on the finding that 

the CaN pathway responded preferentially to sustained, low-amplitude elevations of [Ca2+]i 

(Dolmetsch et al., 1997) and that the tonic motor neuron activity characteristically innervating 

slow twitch fibres resulted in such elevations of [Ca2+]i (Chin & Allen, 1996). Fast fibres, on 

the other hand, are innervated by nerves with infrequent, phasic firing patterns resulting in 

[Ca2+]i transients of insufficient duration to activate CaN. The CaN (Naya et al., 2000) and the 

CaN-NFAT pathway (McCullagh et al., 2004) have also later been shown to facilitate fast to 

slow transitions in skeletal muscle in vivo. 
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 CaN has also been suggested as a mediator of the slow phenotype expression program 

through other downstream factors than NFAT. Wu et al. (2000) showed that CaN dependent 

regulation of muscle specific genes could be mediated by MEF2 alone, although greatly 

enhanced by CaM dependent protein kinase activity (CaMK) and the presence of NFAT. The 

role of CaMK was further explored in transgenic mice and shown to increase the number of 

slow type I fibres in the plantaris muscle, although it was unclear which form of CaMK 

mediated these alterations (Wu et al., 2002).  

Interestingly, Wu et al. (2002) reported increased mRNA levels of PPARγ coactivator 

1α (PGC-1α) in the transgenic animals overexpressing and active form of CaMK IV, a 

regulator of adaptive, non-shivering thermogenesis, mitochondrial biogenesis and oxidative 

metabolism in vivo (Lehman et al., 2000; Puigserver & Spiegelman, 2003). PGC-1α was later 

shown to be preferentially expressed in slow muscles and to induce the formation of slow 

twitch fibres in transgenic animals (Lin et al., 2002). However, PGC-1α does not bind to 

DNA itself, but rather works through interactions with transcription factors. In cultured 

muscle cells, PGC-1α activated transcription in co-operation with MEF2 and served as a 

target for CaN signalling, thus integrating Ca2+ signalling, mitochondrial biogenesis and 

myofibrillar protein regulators. 

Myogenin is a basic helix-loop-helix (bHLH) transcription factor primarily expressed 

in slow fibre types (Voytik et al., 1993). Hughes et al. (1999) found that transgenic mice 

overexpressing myogenin had an increased oxidative capacity of fast muscles and reduced 

fibre sizes compared to wild type muscles, but reported no change in MyHC expression. 

These effects were also observed in muscle fibres of adult mice after somatic myogenin DNA 

transfer (Ekmark et al., 2003). Myogenin is proposed to be linked to slow motor neuron 

activity through CaN (Friday et al., 2000).  

The Ras-mitogen activated protein kinase (MAPK) pathway has also been implicated 

in the nerve activity dependent differentiation of slow muscle fibres (Murgia et al., 2000; 

Koulmann & Bigard, 2006).  

MyoD, on the other hand, has been proposed as a regulator of a fast fibre phenotype. 

MyoD is a bHLH transcription factor primarily expressed in fast fibre types (Voytik et al., 

1993). Seward et al. (2001) showed that MyoD knock-out mice expressed low levels of 

MyHC IIb mRNA compared to muscles of wild type mice. Similar effects have been seen 

after somatic MyoD DNA transfer, implicating that MyoD plays a role in the regulation of a 

fast fibre phenotype (Ekmark et al., unpublished). 



  Introduction   

  11 

The Six and Eya pathway is another mechanism proposed to be involved in the 

establishment and maintenance of a fast twitch muscle phenotype (Grifone et al., 2004).  

 
Figure 1.1 Overview of signalling 

pathways proposed to be involved 

in the excitation-transcription 

coupling in skeletal muscle 
Patterns of electrical activity in 

motor neurons induce expression of 

muscle specific genes through 

activation of intracellular mediators, 

defining the phenotype of individual 

muscle fibres. 

 

 

In addition to the pathways illustrated in figure 1.1, recent data suggest that PPARδ 

might be involved in regulating muscle phenotype (see section 1.5).  

1.4 Peroxisome proliferator-activated receptors (PPARs) 

 The nuclear receptor family of peroxisome proliferator-activated receptors (PPARs) 

was originally named for the ability of the first identified member to induce hepatic 

peroxisome proliferation in mice in response to xenobiotic stimuli (Issemann & Green, 1990). 

However, later studies have revealed that PPARs are nuclear receptors functioning as fatty 

acid activated transcription factors playing important regulatory roles in development, 

inflammation, glucose and lipid metabolism (Schmidt et al., 1992; Xu et al., 1999; Willson et 

al., 2000; Blaschke et al., 2006). 

 The PPARs belong to a subset of nuclear receptors functioning as heterodimers with 

9-cis retinoid X receptors (RXRs) (Kliewer et al., 1992; Mangelsdorf & Evans, 1995). PPARs 

are activated by free fatty acids (FFAs) and their metabolites (Keller et al., 1993; Forman et 

al., 1997; Xu et al., 1999), however they are rather promiscuous as to ligand partners (Ferre, 

2004). As an activated complex, RXR-PPAR binds to PPAR responsive elements (PPREs) 

within the promoter region of target genes. The RXR-PPAR complex can be activated by the 

ligand of either receptor, and the activation state may be modified by phosphorylation (Gilde 

& Van Bilsen, 2003; Diradourian et al., 2005; Gelman et al., 2005) or binding of cofactors 

(McKenna et al., 1999; Berger & Moller, 2002; Krogsdam et al., 2002; Gilde & Van Bilsen, 

2003).  



  Introduction   

  12 

 Three closely related mammalian subtypes encoded by separate genes have been 

identified: α, γ, and β/δ (Dreyer et al., 1992; Kliewer et al., 1994). They all share a common 

domain structure typical of nuclear receptors  and a common mechanism of action (Desvergne 

& Wahli, 1999; Ferre, 2004; Nagy & Schwabe, 2004), shown in figure 1.2.  

 

Figure 1.2 General 

structure and mechanism 

of action of PPARs 
PPAR isoforms share a 

highly conserved, common 

domain structure and 

mechanism of action (figure 

copied from Ferre, 2004). 

 

 

The PPAR subtypes exhibit distinct patterns of tissue expression and overlapping, yet 

distinct biological activities (Kliewer et al., 1994; Jones et al., 1995; Braissant et al., 1996; 

Escher et al., 2001; Berger & Moller, 2002; Gilde & Van Bilsen, 2003).  

PPARα is expressed in metabolically active tissues including liver, heart, kidney and 

skeletal muscle (Braissant et al., 1996). It is implicated in fatty acid catabolism mainly by 

regulating hepatic β- and ω-oxidation. PPARα is the molecular target of fibrates, a class of 

lipid-lowering drugs (Guerre-Millo et al., 2000; Berger & Moller, 2002; Berger et al., 2005). 

PPARγ has the most limited expression pattern of the PPARs; it is found 

predominantly in white and brown adipose tissue, macrophages, colon and placenta (Braissant 

et al., 1996). PPARγ plays a central role in adipogenesis and is the target of 

thiazolidinediones, insulin sensitizers (Rosen et al., 2000; Willson et al., 2000; Berger & 

Moller, 2002; Berger et al., 2005; Semple et al., 2006). 

PPARδ is ubiquitously expressed, although highly expressed in metabolically active 

tissues (Kliewer et al., 1994; Braissant et al., 1996). Until very recently its roles were unclear, 

but it has now been established as a regulator of β- and ω-oxidation of fatty acids (Oliver et 

al., 2001; Muoio et al., 2002; Wang et al., 2003).  
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Altogether, these lipid “sensors” regulate a large spectrum of homeostatic functions, 

including development, inflammation, lipid and glucose metabolism. A current view on their 

integrated metabolic actions is shown in figure 1.3. 

 
Figure 1.3 Metabolic integration 

by PPARs (figure copied from 

Evans et al., 2004) 
The three PPAR isoforms regulate 

lipid and glucose homeostasis 

through co-ordinated activities in 

muscle, liver and adipose tissue. 

 

 

 

 

 

1.5 PPARδ and skeletal muscle 

 During the last few years, knowledge about the physiological functions of PPARδ has 

increased considerably. Strong evidence suggests that PPARδ is an important and central 

regulator of fatty acid oxidation (FAO) in several tissues, such as heart, adipose and 

particularly skeletal muscle tissue. In skeletal muscle, which is one of the major sites of lipid 

catabolism and utilization, PPARδ expression is several fold higher than that of PPARα and 

PPARγ (Braissant et al., 1996; Escher et al., 2001; Muoio et al., 2002; Gilde & Van Bilsen, 

2003; Wang et al., 2004).  

As shown in PPARα knock-out mice by Muoio et al. (2002), PPARδ was capable of 

inducing multiple pathways co-operatively promoting FAO in skeletal muscle, a function 

previously assigned to PPARα. Furthermore, treatment of rat or human cultured myotubes 

with a PPARδ agonist, GW742, resulted in increased FAO and induced expression of several 

lipid regulatory genes. To directly assess the role of PPARδ in skeletal muscle cells, the 

responses to natural and synthetic agonists were investigated in C2C12 myotubes 

overexpressing the receptor and in dominant-negative mutants (Holst et al., 2003). The 

response was an induction of genes involved in lipid metabolism and an increase of FAO. 

Overexpression enhanced these effects, while the opposite was observed in the dominant-

negative mutant. Moreover, PPARδ expression was reported to be regulated by nutritional 

changes. mRNA levels were drastically up-regulated in mouse gastrocnemius muscles after a 
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24h starvation period and restored to control level upon refeeding. These changes were 

accompanied by parallel alterations in expression of genes involved in lipid metabolism. 

Tanaka et al. (2003) demonstrated that in L6 myotubes, PPARδ controlled FAO by regulating 

a large panel of genes involved in FA transport, β-oxidation and mitochondrial respiration, 

while Dressel et al. (2003) showed that in C2C12 myotubes, PPARδ was the main PPAR 

isotype involved in FAO.  

In vivo experiments have confirmed the implication of PPARδ in the regulation of 

fatty acid catabolism, suggested by the in vitro experiments described above. Tanaka et al. 

(2003) demonstrated that in wild type mice, administration of PPARδ agonist GW501516 for 

3-4 weeks increased fatty acid β-oxidation in skeletal muscle. Furthermore, agonist treatment 

of mice fed on a high-fat diet ameliorated diet-induced obesity and insulin resistance by 

enhancing FAO, inducing mitochondrial biogenesis and reducing intramuscular fat depots. 

Additionally, agonist treatment markedly improved plasma glucose and blood insulin levels in 

genetically obese db/db mice, also supported by Lee et al. (2006).  

To investigate the roles of PPARδ in lipid metabolism more precisely, transgenic mice 

models were developed. Wang et al. (2003) described a transgenic mouse model in which a 

constitutively active form of PPARδ (VP16-PPARδ) was selectively overexpressed in adipose 

tissue. An up-regulation of genes involved in FA catabolism and energy uncoupling was 

observed, accompanied by a decrease in adiposity of animals both fed on normal and on high-

fat diet. Moreover, this type of overexpression and treatment with GW501516 prevented 

development of obesity in db/db mice, shown in figure 1.4. These results implicated PPARδ 

as an important regulator of fat burning in vivo, and therefore also as a potential therapeutic 

target in the treatment of obesity and associated disorders.  
 

Figure 1.4 Activation of PPARδ in adipose tissue  

protects against obesity in a genetically fat mouse model  

(figure copied from Wang et al., 2003) 

Left: db/db mouse 

Right: db/db / VP16-PPARδ in adipose tissue 

Another transgenic mouse model was constructed using a cre/lox recombination 

approach (Luquet et al., 2003). Muscle specific overexpression of PPARδ increased the 

oxidative capacity of soleus, tibialis anterior and plantaris muscles, illustrated by an increase 

in succinate dehydrogenase (SDH) activity level. These changes were accompanied by a net 

reduction in body fat content related to a decrease in adipocyte diameter. The transgenically 
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induced muscle phenotype observed was reminiscent of that promoted by endurance exercise; 

however no changes in muscle cross sectional area (CSA) or MyHC expression were 

observed. Luquet and co-workers speculated that PPARδ could be involved in exercise 

promoted muscle adaptation, and indeed; a 2.7 fold increase in PPARδ protein content was 

seen in the plantaris muscle of wild type mice after 6 weeks of training, compared to non-

trained controls. Wang et al. (2004) continued to explore the functions of PPARδ by 

transgenic expression of VP16-PPARδ in skeletal muscle. Remarkably, this transgenic 

overexpression of an active PPARδ induced a significantly increased number of type I fibres 

in the muscles, compared to controls. Spectacularly, the transgenic mice were capable of 

continuous running of up to twice the distance of a wild type littermate. Gene expression 

typical of oxidative type I fibres and mitochondrial biogenesis was induced, and similar 

changes were also observed in GW501516 agonist treated wild type mice. The transgenic 

mice even showed resistance to obesity when fed on a high-fat diet. These results collectively 

showed that muscle specific activation of PPARδ induced a fibre phenotype reminiscent of 

that seen after endurance exercise, implicating a role for PPARδ in the excitation-transcription 

coupling in skeletal muscle.  

Furthermore, Wang et al. (2004) investigated the protein levels of endogenous PPARδ 

in homogenates from different wild type mice muscles, and found it to be higher in the slow 

muscle SOL than in the mixed muscle gastrocnemius and the fast EDL. These results 

supported the hypothesis of a role for PPARδ in the regulation of a slow muscle phenotype, 

although the precise distribution of the protein within muscles and among fibre types has not 

been investigated (Gilde & Van Bilsen, 2003), and was one of the aims of this work. 

PPARδ gene disruption is lethal at early stages for almost all the embryos due to a 

placental defect. The surviving knock-out animals are smaller than control littermates and 

exhibit striking reductions of adiposity in all types of fat tissue, skin defects and alterations of 

myelinisation. As this was not the case in mice with an adipose-specific deletion, the fat 

reduction probably was a reflection of peripheral PPARδ functions on systemic lipid 

metabolism (Peters et al., 2000; Barak  et al., 2002). Moreover, Wang et al. (2004) found that 

the few surviving null mice could sustain only a third of the running time and distance of age- 

and weight matched wild type counterparts, further suggesting a role for PPARδ in 

enhancement of physical endurance. 

Taken together, these in vitro and in vivo observations strongly implicate PPARδ as an 

important regulator of fatty acid catabolism in skeletal muscle and adipose tissue. Data 

presented in this chapter also indicate that PPARδ and its ligands might constitute a key 
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molecular switch in the regulation of muscle fibre type and oxidative capacity, as seen in 

transgenic animals (Luquet et al., 2003; Wang et al., 2004). On the other hand, the observed 

effects in the transgenic animals may reflect developmental effects only, as the transgenic 

product is present from early embryonic development. The transgenic effects may also reflect 

systemic effects, and therefore be related only to an altered metabolic state of the animal as a 

whole. Consequently, the findings might have no bearing on the importance of PPARδ in the 

regulation of skeletal muscle phenotype in adult animals.    

This study investigates the role of an active PPARδ in individual skeletal muscle fibres 

of adult animals in relation to the mechanisms underlying determination of fibre phenotype, 

with experiments precluding developmental effects, genetic disposition, and more global and 

complex effects of physical activity on the organism as a whole. The aim was to identify 

distinct molecular mechanisms operating in the muscle cells themselves, mediating adaptive 

phenotypic changes in adult muscle that can be linked to alterations in muscle activity.  
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1.6 Aim of the study  

1. Will PPARδ activity induce phenotypic changes in individual skeletal muscle fibres 

of adult animals? 

 To address this question, VP16-PPARδ was transfected into muscle fibres of the fast 

EDL of adult rats by in vivo electroporation. MyHC expression, SDH activity level and CSA 

of the transfected fibres were analysed five or fourteen days after transfection and compared 

to that of sham transfected and normal non-transfected control fibres. 

2. What are the expression patterns of PPARδ protein within wild type muscles and 

among different fibre types? 

 To answer this, normal untreated fast EDL and slow SOL muscles of adult rats were 

cryosectioned and neighbouring cross sections were stained for PPARδ expression, SDH 

activity and MyHC fibre type.  
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2 MATERIALS AND METHODS 

2.1 Overview 

In the first part of this study, EDL muscles of adult rats were transfected with two 

plasmids; one encoding a constitutively active form of PPARδ and one encoding the reporter 

protein β-galactosidase, used to identify transfected fibres. The right leg EDL was transfected 

with both plasmids while the left leg EDL was transfected only with the reporter plasmid, 

serving as sham control. The transfer of plasmid DNA into the muscle fibres was facilitated 

by in vivo electroporation of the muscle. Five or fourteen days after the transfection and 

electroporation procedure, muscles were excised and cryosectioned. Transverse serial sections 

were histochemically stained for β-galactosidase and SDH activity, and fibre types were 

determined using monoclonal antibodies against MyHCs. On the basis of the histochemical 

analysis of neighbouring sections, muscle fibres from the different experimental groups were 

compared to each other and to normal non-transfected, randomly selected fibres from the 

same muscles.  

 In the second part of this study, EDL and SOL muscles of normal, non-treated rats 

were excised and cryosectioned. Neighbouring sections were histochemically stained for 

PPARδ expression, SDH activity and MyHC fibre types in order to describe the expression 

patterns of the wild type protein under normal conditions.  
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2.2 Animals 

 Twenty male WISTAR rats, 200-250 g body weight, were used in this study. The rats 

were delivered by the Norwegian Institute of Public Health, and kept in cages at the animal 

research facilities of the University of Oslo. The air temperature was kept at 22ºC with 

humidity ranging from 50-60 %, and the light was regulated at 12/12 hours cycles. Food and 

water were given ad libitum.  

 All animal procedures were reviewed and approved by the Norwegian Animal 

Research Authority and were conducted in accordance with the Norwegian Animal Welfare 

Act of December 20th, 1974, no. 37, chapter VI, sections 20-22, and the Regulation of Animal 

Experimentation of January 15th, 1996. 

2.3 Surgical procedures 

 Each animal was initially anaesthetized with an intraperitoneal injection of 5 µl/g 

Equithesin (Sykehusapoteket Rikshospitalet, Norway; Appendix A, 5.1.1). The effect of the 

anaesthetics was controlled by checking for absence of withdrawal reflex when pinching the 

metatarsus region, and if necessary, additional anaesthetics were administrated. After deep 

anaesthesia was induced, hair was removed from the front part of the lower leg using an 

electric shaver and hair removal cream (Veet, Reckitt and Coleman). The rat was laid on its 

back, and one leg was fixed onto a styrofoam bloc by pinning it into a locked position. The 

extensor digitorum longus muscle was surgically exposed and 100 µl DNA solution (appendix 

A, 5.1.2, 5.1.3) was injected into the interstitium in the centre of the muscle, before 

transfected into the muscle fibres during electroporation. Following the surgical procedure, 

the wound was closed with sutures.  

Five or fourteen days after transfection, animals were re-anaesthetized and the EDL 

muscles surgically excised. The animals were sacrificed by neck dislocation while still under 

deep anaesthesia.  

For the excision of wild type muscle from normal, non-treated rats, the surgical 

procedure consisted of administration of anaesthetics as described above, exposure and 

excision of EDL or SOL muscles, before the animals were sacrificed as previously described.  
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2.4 Plasmids 

To induce overexpression of PPARδ, a pCMX plasmid (Umesono et al., 1991) 

encoding the intrinsically active VP16-PPARδ fusion protein was transfected into the muscle 

fibres of EDL (figure 2.1B). The DNA sequence encoding the PPARδ protein was inserted 

into the HindIII/ BamHI sites of the 4.5 kb pCMX plasmid (Andrews & Faller, 1991). To 

generate the VP16-PPARδ transgene, a VP16 domain from the herpes simplex virus (HSV) 

was fused in frame N terminally to the PPARδ gene, using the HindIII restriction sites. The 78 

amino acid long VP16 domain is a strong transcriptional activator of early viral genes. VP16 

insertion resulted in a constitutively active transgene driven by a cytomegalovirus (CMV) 

promoter. The pCMX-VP16-PPARδ plasmid was kindly donated by Ronald M. Evans for use 

in these experiments. 

A reporter plasmid, pAP-lacZ, was co-transfected with the pCMX-VP16-PPARδ 

plasmid into the muscle cells for identification of transfected fibres, and serving as sham 

control when transfected into muscle fibres alone (figure 2.1A). The 7.8 kb pAP-lacZ plasmid 

encode the Escherichia Coli β-galactosidase sequence driven by a Rouse sarcoma virus 

(RSV) promoter, in addition to an origin of replication driven by a simian virus (SV) 40 

promoter (Kisselev et al., 1995). 

 

 

 

 

 

  

 

 

 

 

Figure 2.1 Expression plasmids 

A. The 7.8 kb reporter plasmid, pAP-lacZ, encoding  β-galactosidase 

B. The 4.5 kb experimental plasmid, pCMX-VP16-PPARδ, encoding VP16-PPARδ.  
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2.5 Transfection of plasmids 

2.5.1 Transfection in tissue culture 

 To confirm the actual transcription and translation of the VP16-PPARδ transgene into 

a functional protein, human embryonic kidney cells (HEK-293) were transfected with the 

expression plasmid pCMX-VP16-PPARδ, using a Lipofectamine2000 kit from Invitrogen. A 

sham control group was transfected only with the reporter plasmid, pAP-lacZ.  

Proteins were extracted from the cells as described by Laemmli (1970) and 30 µg of 

protein from the two groups was run on SDS-PAGE according to Burnette (1981), followed 

by Western blotting (BIO-RAD protocol (1999)). The VP16-PPARδ protein was visualized 

by application of a specific rabbit anti-VP16 IgG primary antibody (1:1000, SIGMA, V4388) 

and a goat horse radish peroxidase (HRP) conjugated anti-rabbit IgG secondary antibody 

(1:1000, Abcam, ab6721), followed by the use of an ECL Western Blotting Detection kit 

(Amersham). Visualization by application of a rabbit anti-PPARδ IgG primary antibody 

(1:500, Abcam, ab8937) was tested, but not successful due to extensive background staining. 

2.5.2 In vivo electroporation 

In vivo electroporation of muscle fibres was performed as previously described by 

Mathiesen (1975), and is shown in figure 2.2. The electroporation procedure permeates the 

cell membrane and facilitates somatic transfer of DNA into muscle cells.  

Following surgical exposure of EDL, 100 µl of DNA solution (appendix A, 5.1.2, 

5.1.3) was injected into the interstitium in the centre of the muscle from the distal end, using a 

U-100 insulin BD Micro-FineTM syringe. Subsequently, five trains of 1000 symmetrical 

bipolar pulses (200 µs in each direction) with a peak to peak voltage of 50 V were run across 

the muscle by two 1 mm thick/2 cm long silver electrodes, placed approximately 3-5 mm 

apart. The pulses were generated by a pulse generator (Pulsar 6bp-a/s, Fredrick Haer & Co), 

and the electrical charge was registered by an analogue oscilloscope (03245A, Gould 

Advance). 

Figure 2.2 In vivo electroporation  
Two silver electrodes create an electrical field across the EDL 

muscle, previously injected with DNA solution, to facilitate the 

somatic transfer of DNA into muscle fibres. 
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A DNA solution containing a mix of the two plasmids was injected into the right leg 

EDL (appendix A, 5.1.3), whereas a DNA solution containing only the reporter plasmid was 

injected into the left leg EDL (appendix A, 5.1.2), serving as sham control. As previously 

shown by Rana et al. (2004), nearly 100 % co-expression results when two separate plasmids 

are co-transfected into muscle fibres by in vivo electroporation. As a result of the differential 

transfection of muscle fibres in the right and left leg EDL, two experimental groups were 

formed; the VP16-PPARδ transfected fibres (hereafter called the PPARδ transfected fibres) 

and the lacZ transfected fibres (hereafter called the sham transfected fibres).  

Additionally, an equivalent number of randomly selected normal, non-transfected 

fibres from the same muscles constitute yet another experimental group, serving as internal 

controls (hereafter called the normal fibres). To ensure an unbiased material, these were 

always selected as the nearest fibre down to the left from the transfected  

fibres. The normal fibres from the PPARδ transfected and the sham transfected muscles are 

presented as one experimental group throughout this study when no significant differences 

were found between the groups and statistical calculations without pooling the data, yielded 

the same result (see section 2.9 for statistical details). One exception was fibre type 

distribution fourteen days after transfection, where the number of normal type I fibres was 

higher in the PPARδ transfected (n=14) than in the sham transfected (n=2) muscles. For 

simplicity reasons, this material was still presented as one group in table 3.1, section 3.2.  

All the three experimental groups presented in this study consisted of pooled data from 

several animals, as no systematic interanimal variations were observed.  

The three different experimental groups of this study are presented in table 2.1. 

Table 2.1 Overview of experimental groups, expression vectors and overexpressed proteins 

Experimental group: Expression vectors: Overexpressed proteins: 

Normal fibres - - 

Sham transfected fibres pAP-lacZ β-galactosidase 

PPARδ transfected fibres pCMX-VP16-PPARδ 
pAP-lacZ 

VP16-PPARδ 
β-galactosidase 
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2.6 Histochemistry 

2.6.1 Excision and freezing of muscles 

 The transfected EDL muscles were surgically excised in the experimental animals five 

or fourteen days after the electroporation procedure, and the SOL and EDL muscles excised 

from normal, untreated rats. The muscles were slightly stretched between two pins attached to 

a double layer of thin wax (Tenax wax, S. S. White Manufacturing), and subsequently frozen 

in melting isopentane (-160ºC) and liquid nitrogen (-196ºC). The muscles were stored in 2 ml 

microtubes (SARSTEDT) at -80ºC for further analysis.  

2.6.2 Preparation of transverse muscle serial sections 

The frozen muscles were mounted in Tissue Tek optimal cutting temperature 

compound (Sakura Finetechnical Company) and cryosectioned at 10 µm in the cryotome 

(HM560M Microme). The temperature of the muscle tissue was adjusted to -18ºC and the 

knife to -24ºC. Transverse serial sections were mounted on SuperFrost Plus slides (Menzel-

Gläser) and stored at -80ºC for further histochemical analysis. 

2.6.3 Staining for β-galactosidase activity 

 β-galactosidase was used as a reporter protein in the transfection experiments to 

identify transfected fibres (Lojda, 1970; Sanes et al., 1986). β-galactosidase activity was 

determined histochemically in a colour reaction by the addition of the enzyme’s substrate, 5-

bromo-4-chloro-3-indolyle-β-D-galactoside (X-gal) to the muscle sections (appendix A, 

5.1.4). β-galactosidase hydrolyses X-gal to a colourless product named indoxyle. Indoxyle, in 

turn, dimerises and creates insoluble blue crystals that can be visualized under the 

microscope, thereby identifying the transfected fibres, as shown in figure 2.3.  

 To exclude the possibility of non-specific staining, the staining procedure was 

performed without the X-gal substrate on a test section. This negative control did not result in 

any positively stained blue fibres.  

Figure 2.3 Staining for β-galactosidase activity 
EDL cross section stained for β-galactosidase activity by the addition of 

the substrate X-gal. LacZ transfected fibres were identified by blue 

staining (here seen in grey/black). Scale bar: 50 µm.  
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2.6.4 Staining for succinate dehydrogenase activity 

 SDH is a flavoprotein catalyzing the oxidation of succinate to fumarate, and is the 

only membrane-bound enzyme in the citric acid cycle in mitochondria of cells. Accordingly, 

the level of SDH activity may be used as an indicator of the oxidative capacity and of the 

mitochondrial content of muscle fibres. 

 The colour reaction reflecting the SDH activity of a muscle fibre quantitatively, was 

performed as described by Bancroft (1975) (appendix A, 5.1.5). The staining method is based 

on the reduction and protonation of tetrazolium to formazan, catalyzed by the SDH enzyme, 

when succinate is added as substrate to the sections. Tetrazolium is colourless and insoluble 

while formazan is crystalloid and has a blue-purple colour. Consequently, the amount of 

colouring reflects the SDH activity level of the respective fibre, serving as a quantitative 

measurement of its oxidative capacity.  

 Staining without the substrate succinate on a test section yielded no positively stained 

fibres, serving as negative control. 

2.6.5 Staining for myosin heavy chain isoform 

 Monoclonal antibodies against MyHC subtypes were used to determine muscle fibre 

type, kindly provided by Stefano Schiaffino. Secondary antibodies were conjugated to 

fluroescein or cyanine in order to visualize specific binding of primary antibody to individual 

muscle fibres on the cross sections (table 2.2, appendix A, 5.1.6). When fluorescein (FITC) or 

cyanine is illuminated with blue-green (λ=485 nm) or green (λ=546 nm) light, respectively, 

fluorescence is emitted, and can thereby be used to identify the positively stained fibres.  

 Negative control sections stained only with secondary antibodies gave no fluorescence 

for any of the four primary antibodies used. 

Table 2.2 Overview of antibodies used to identify MyHC subtype expression in muscle fibres 

MyHC: Primary antibody: Secondary antibody: 

I BA-D5 Rabbit anti-mouse IgG, FITC conjugated (SIGMA, F-9137) 

IIa SC-71 Rabbit anti-mouse IgG, FITC conjugated (SIGMA, F-9137) 

Non-IIx BF-35 Rabbit anti-mouse IgG, FITC conjugated (SIGMA, F-9137) 

IIb BF-F3 Goat anti-mouse IgM, Cyt 3 (J115-165-020, Jackson ImmunoResearch Lab.) 
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An example of histochemical analysis of serial sections is shown in figure 2.4, 

showing β-galactosidase, SDH and anti-MyHC staining in a PPARδ transfected EDL muscle. 

MyHC fibre type, SDH activity and cross sectional area of the transfected and the randomly 

selected normal fibres were determined as shown in the stained neighbouring sections.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4 A-F Example of serial cross section staining in a VP16-PPARδ transfected EDL muscle  
Serial cross sections stained for β-galactosidase activity (A), MyHC I (B), MyHC IIa (C), SDH activity (D), 

MyHC non-IIx (E) and MyHC IIb (F). Transfected fibres are β-galactosidase positive and appear dark (P1-4, 

labelled red). Randomly selected, normal non-transfected fibres are β-galactosidase negative and appear bright 

(N1-4, labelled green). Fibre types were determined as presented in the SDH image (D). The differential strength 

of SDH staining reflects differences in oxidative capacity among fibres. Scale bars: A, D: 50 µm; B, C, E, F: 50 

µm.  

2.6.6 Staining for VP16 expression 

 Staining for VP16 expression in VP16-PPARδ transfected fibres was performed to 

confirm the identification of transfected fibres from the β-galactosidase staining and to further 

confirm the actual translation of the transgene (appendix A, 5.1.7).  

A primary monoclonal rabbit IgG antibody against the VP16 domain from the herpes 

simplex virus (SIGMA, V4388) was applied to the sections, followed by a goat anti-rabbit 

IgG fluorescein secondary antibody (Vector Laboratories Inc., FI-1000). The staining pattern 

was compared to neighbouring sections stained for β-galactosidase activity.  

 Negative controls stained only with secondary antibody yielded no fluorescence. 
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2.6.7 Staining for PPARδ expression 

Staining for PPARδ expression was performed on EDL and SOL muscle sections from 

normal rats to analyse wild type expression patterns, and on sections from VP16-PPARδ 

transfected muscles to confirm the identification of transfected fibres from the β-galactosidase 

staining and the actual translation of the transgene (appendix A, 5.1.8).  

A rabbit polyclonal primary anti-PPARδ antibody (Santa Cruz Biotechnology Inc., Sc-

7197) was applied to the sections, followed by a goat anti-rabbit IgG fluorescein secondary 

antibody (Vector Laboratories Inc., FI-1000). The fluorescence detected was used to illustrate 

the level of PPARδ expression. 

Negative controls stained only with secondary antibody yielded no fluorescence. 

2.6.8. Staining for localization of nuclei 

 Staining for localization of nuclei was performed on cross sections of EDL and SOL 

muscles from normal non-treated rats and on VP16-PPARδ transfected muscles (appendix A, 

5.1.9).  

A UV-excitable (λ=400 nm) nucleic acid stain was applied to the sections (Hoechst 

33342, Molecular Probes). The positively stained areas represent nuclei and were compared to 

neighbouring sections from the same area of the same muscle, stained for VP16 or PPARδ 

expression, in order to determine possible nucleic localization of the VP16-PPARδ fusion 

protein or the wild type PPARδ protein.  
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2.7 Imaging 

2.7.1 Bright field imaging 

 Bright field images of muscle cross sections stained for β-galactosidase and SDH 

activity were taken using a CCD video camera (C2400, Hamamatsu) connected to a 

microscope (BX50W1, Olympus). The stained sections were mounted in glycerine gel and 

photographed in a dark room using 4x or 10x water immersion objectives (UMFPlanF1, 

Olympus). The images were digitalized through an image-processing unit (Argus-20, 

Hamamatsu) prior to the transferral to a Power Macintosh G3 computer and further 

processing in Photoshop 7.0 (Adobe). 

2.7.2 Fluorescence imaging 

 Muscle cross sections stained with fluorescein or cyanine conjugated secondary 

antibodies were imaged using a SIT video camera (C2400-08, Hamamatsu) connected to a 

microscope (BX50W1, Olympus). The sections were photographed in a dark room using a 

20x water immersion objective (UMFPlanF1, Olympus). Three filter cubes (Omega Optical) 

were used to illuminate the sections with blue-purple (XF11), green (XF37) or blue-green 

(XF22) light. The blue-purple filter was used for the nucleic acid staining, the green filter for 

staining where a cyanine conjugated secondary antibody was used, and the blue-green filter 

for staining where a fluorescein conjugated secondary antibody was applied to the sections. 

Also here the images were digitalized through an image-processing unit (Argus-20, 

Hamamatsu) prior to the transferral to a Power Macintosh G3 computer, and further 

processing in Photoshop 7.0 (Adobe). 
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2.8 Quantitative histochemistry 

2.8.1 Quantification of SDH activity 

 SDH activity was measured in muscle fibres overexpressing VP16-PPARδ, sham 

transfected fibres and in the randomly selected normal fibres within the same areas of the 

muscles, in addition to in fibres from normal, untreated muscles.  

 SDH activity was quantified by the measurement of grey tone of manually encircled 

muscle fibres in ImageJ (NIH). The mean grey value was presented on a scale ranging from 0 

(white) to 255 (black). The scale was standardized for all sections before images were taken 

in order to be able to compare fibres from different muscles. In addition, the mean grey value 

of normal IIb fibres from each section was set to 0, while that of normal IIa fibres was set to 

1, and the SDH activity level of other fibres from the same section were calculated in relation 

to these set points. SDH activity level of analysed fibres was thus presented as a relative value 

in order to account for potential differences in staining or calibration of light upon imaging of 

the individual sections.  

2.8.2 Calculation of cross sectional area  

 CSA was measured in muscle fibres overexpressing VP16-PPARδ, sham transfected 

fibres and in randomly selected normal fibres within the same areas of the muscles. 

 CSA was measured by manually encircling individual muscle fibres in ImageJ (NIH), 

and the number of pixels was later converted to µm2 by calibration against a µm scale. 

2.9 Statistical analysis 

For statistical comparison of SDH activity and CSA of VP16-PPARδ transfected, 

sham transfected and normal non-transfected fibres, a one-way Anova with a Bonferroni post-

test was performed. The level of significance was set to 5 %. As this test is based on a 

Gaussian distribution of the overall population of values, a normality test was run 

(Kolmogorov-Smirnov (KS) test) prior to the one-way Anova. For p>0.10, the population was 

concluded to be approximately Gaussian and suitable for one-way Anova.  

For statistical comparison of fibre type distribution among fibres transfected with 

pCMX-VP16-PPARδ, pAP-lacZ and normal controls, a Fisher’s exact test was used. The 

level of significance was set to 5 %. 

The statistical analysis was performed in GraphPad Prism 4.
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3 RESULTS 

3.1 Expression of the VP16-PPARδ fusion protein 

 To confirm the actual expression and translation of the VP16-PPARδ transgene, HEK-

293 cells were transfected with the experimental plasmid, pCMX-VP16-PPARδ. A sham 

group was transfected with the reporter plasmid, pAP-lacZ (2.5.1). Following protein 

extraction and SDS-PAGE, a Western blot was run. The resulting blot is presented in figure 

3.1, showing a VP16 positive band of about 53 kDa, the expected size of the VP16-PPARδ 

fusion protein, in the pCMX-VP16-PPARδ transfected cells, but not in the sham transfected 

cells.  
 

Figure 3.1 Expression of VP16-PPARδ in tissue culture 

Western blot of protein extracts from HEK-293 cells 

transfected with the sham plasmid pAP-lacZ (SHAM) or the 

experimental plasmid pCMX-VP16-PPARδ (VP16-PPARδ). 

The band represents the 53 kDa VP16-PPARδ protein, 

visualized by application of a specific VP16 antibody 

(SIGMA). 

 

  

 

Cross sections from VP16-PPARδ transfected EDL muscles were histochemically 

stained for VP16 (figure 3.2) and PPARδ (figure 3.3) expression to further confirm the 

expression of the transgene. The stained sections were compared to neighbouring sections 

stained for β-galactosidase activity to confirm co-expression following co-transfection.  

 

 

 

 

 

 
Figure 3.2 A, B Co-transfection is reflected in co-expression of β-galactosidase and VP16 
Serial cross sections of a VP16-PPARδ transfected EDL muscle stained for β-galactosidase activity (A) and 

VP16 expression (VP16 antibody, SIGMA) (B), showing co-expression following co-transfection in fibres 

marked P1-7 (labelled in red). Scale bars: 50 µm. 



  Results   

  30 

 

 

 

 

 

 

 

Figure 3.3 A, B Co-transfection is reflected in co-expression of β-galactosidase and PPARδ 

Serial muscle sections of a VP16-PPARδ transfected EDL muscle stained for β-galactosidase activity (A) and 

PPARδ expression (PPARδ antibody, Santa Cruz Biotech. Inc.) (B), showing co-expression following co-

transfection in fibres marked P1-6 (labelled in red). Scale bars: 50 µm. 

 As can be seen from figures 3.2 and 3.3, the VP16-PPARδ transgene was expressed 

and translated in the β-galactosidase identified PPARδ transfected fibres, with the protein 

localized to both nuclei and cytoplasm. The observed strength of the VP16 staining seemed to 

correlate well with the strength of the β-galactosidase staining, however interpretation of the 

PPARδ staining was confounded by the presence of the endogenous PPARδ protein.   

 Altogether, these in vitro and in vivo results demonstrated that the transgene product 

was of the right size and was expressed in fibres co-transfected with the lacZ reporter, an 

important pre-requisite for further experiments using these plasmids.  
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3.2 Fibre type distribution 

The distribution of fibre types in the three experimental groups was calculated by 

counting the number of different fibre types identified by anti-MyHC staining five and 

fourteen days after transfection. Their distribution is shown in table 3.1/figure 3.4. 

The composition of fibre types in normal EDL observed in this study (table 3.1/figure 

3.4) was in accordance with previous observations of fibre type distribution in rat EDL, 

consisting of approximately 45 % type IIb, 29 % type IIx, 23 % type IIa and 3 % type I 

(Windisch et al., 1998), or 60 % IIb, 27 % IIx, 10 % IIa and 3 % type I (Demirel et al., 1999).  

As to hybrid fibres, positively staining for two or more subtypes of MyHC (Pette & 

Staron, 1990; Schiaffino & Reggiani, 1994; Windisch et al., 1998), fibre types were defined 

according to the relatively highest strength fluorescence (I/IIa hybrids). However, the lack of 

a IIx specific antibody (only a non-IIx antibody) made it impossible to detect IIa/IIx and 

IIx/IIb hybrids, the most important hybrids in EDL and in this study.  

Table 3.1 Distribution of fibre types in EDL 5 and 14 days after VP16-PPARδ transfection and in control 

groups 

Time from transfection to muscle excision: 5 days: 14 days: 

Fibre type:  Experimental group: n %: n %: 
Normal 11 2.5 16 2.5  
Sham transfected 4 1.4 4 1.6  

I 

PPARδ transfected 3 1.9 17 4.4  
Normal 72 16.4 79 12.5  
Sham transfected 46 16.2 28 11.5  

IIa 

PPARδ transfected 19 12.3 98 25.3* 
Normal 111 25.3 193 30.6  
Sham transfected 79 27.8 76 31.3  

IIx 

PPARδ transfected 45 29.2 98 25.3  
Normal 244 55.7 343 54.4  
Sham transfected 155 54.6 135 55.6  

IIb 

PPARδ transfected 87 56.5 175  45.1* 

Total number of analysed fibres: 876   1262   

5 days after transfection, there were no significant differences in fibre type distribution between any of the 

experimental groups. However, there was a significant increase in the proportion of IIa fibres (p<0.0001) and a 

significant decrease in the proportion of IIb fibres (p=0.0045) among the PPARδ transfected fibres 14 days after 

transfection, compared to the control groups; the non-transfected and the sham transfected fibres (*).  
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Five days after transfection, 876 fibres from six EDL muscles were analysed (table 

3.1/figure 3.4). There were no significant differences in fibre type distribution between the 

PPARδ transfected, sham transfected and normal controls, nor between the sham transfected 

and the normal fibres (p>0.05).  

 Fourteen days after transfection, 1262 fibres from twelve EDL muscles were analysed 

(table 3.1/figure 3.4). There were significant differences in fibre type distribution when 

comparing PPARδ transfected fibres to normal controls; a 9.3 % decrease in the proportion of 

IIb fibres (p=0.0045) and a 12.8 % increase in the proportion of IIa fibres (p<0.0001), 

representing a doubling in the proportion of IIa fibres. Also when comparing PPARδ 

transfected fibres to sham transfected fibres, there were significant differences in fibre type 

distribution; a decrease in the number of IIb fibres (p=0.0113) and an increase in IIa fibres 

(p<0.0001). However there were no significant differences in fibre type distribution between 

sham transfected and normal controls (p>0.05).  

 

 

 

 

 

 

 
 

 

 

Figure 3.4 Distribution of fibre types in EDL 5 and 14 days after VP16-PPARδ transfection and in control 

groups 
Fibre types were defined according to MyHC expression. 5 days after transfection, there were no significant 

differences in fibre type distribution among the PPARδ transfected fibres and the control groups. However, 14 

days after transfection, there was a significant increase in the proportion of IIa fibres (p<0.0001) and a 

significant decrease (p=0.0045) in the proportion of IIb fibres among the PPARδ transfected fibres compared to 

the control groups; the normal non-transfected and the sham transfected fibres (*). There were no significant 

differences between the control groups (p>0.05). 
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3.3 Cross sectional area 

 CSAs of muscle fibres from the three experimental groups were measured five and 

fourteen days after transfection and are presented in mean ± SEM for each fibre type in table 

3.2/figure 3.5. 

Normally, the hierarchy of CSA of fibre types in EDL and mixed muscles in general is 

IIb>IIx>IIa>I (Rivero et al., 1998; Nakatani et al., 1999), also confirmed by this study (table 

3.2/figure 3.5).  

Table 3.2 Cross sectional areas of EDL muscle fibres 5 and 14 days after VP16-PPARδ transfection and in 

control groups 

Time from transfection to muscle excision: 5 days:                14 days: 
Fibre type:  Experimental group: n Cross sectional area, 

mean ± SEM, µm2: 
n Cross sectional area, 

mean ± SEM, µm2: 

Normal 11 809 ± 35 16  1026 ± 12 
Sham transfected 4 852 ± 35 4 996 ± 9 

I 

PPARδ transfected 3 727 ± 14 17   1010 ± 24 
Normal 72 1062 ± 16 79 1087 ± 8 
Sham transfected 46 1081 ± 14 28 1097 ± 9 

IIa 

PPARδ transfected 19    929 ± 36* 98     1015 ± 13* 
Normal 111 1178 ± 12 193 1233 ± 7 
Sham transfected 79 1209 ± 11 76 1229 ± 9 

IIx 

PPARδ transfected 45   1070 ± 32* 98     1129 ± 11* 
Normal 244 1359 ± 11 343 1499 ± 7 
Sham transfected 155 1376 ± 9 135 1493 ± 8 

IIb 

PPARδ transfected 87   1223 ± 30* 175     1354 ± 10* 

Total number of analysed fibres: 876     1262   

CSAs are presented in mean ± SEM for each fibre type. PPARδ transfected IIa, IIx and IIb fibres had 

significantly reduced CSAs compared to sham transfected and normal controls both 5 and 14 days after 

transfection (p<0.001) (*). There were no significant differences between the control groups (p>0.05). 

There were too few type I fibres to perform statistical tests on, and consequently they 

were therefore not analysed further. 

Five days after transfection, 876 fibres from six EDL muscles were analysed and their 

CSAs are presented in table 3.2/figure 3.5 (hatched columns). PPARδ transfected IIa fibres 

had significantly smaller CSAs than sham transfected (p<0.001) and normal IIa controls 

(p<0.001), shown by a mean reduction of 13 % compared to normal IIa fibres (figure 3.5A, 

hatched columns). CSAs of PPARδ transfected IIx fibres were significantly reduced by 9 % 

compared to normal (p<0.001) and sham transfected IIx fibres (p<0.001) (figure 3.5B, 

hatched columns). PPARδ transfected IIb fibres showed an average 10 % reduction in CSA 



  Results   

  34 

compared to normal IIb controls (p<0.001) and sham transfected IIb fibres (p<0.001) (figure 

3.5C, hatched columns). There were no significant differences in CSAs between sham 

transfected and normal IIa, IIx and IIb controls (p>0.05).   

Fourteen days after transfection, 1262 fibres from eleven EDL muscles were analysed 

and their CSAs are presented in table 3.2/figure 3.5 (open columns). PPARδ transfected IIa 

fibres showed a mean 7 % reduction in CSA compared to normal (p<0.001) and sham 

transfected IIa controls (p<0.001) (figure 3.5A, open columns). PPARδ transfected IIx fibres 

showed a mean 8 % reduction in CSA compared to normal IIx fibres (p<0.001) and sham 

transfected controls (p<0.001) (figure 3.5B, open columns). PPARδ transfected IIb fibres 

showed a mean 10 % reduction in CSA when compared to normal (p<0.001) and sham 

transfected IIb controls (p<0.001) (figure 3.5C, open columns). There were no significant 

differences in CSAs between sham transfected and normal IIa, IIx and IIb fibres (p>0.05). 

Figure 3.5 A, B, C Cross sectional area of IIa, IIx and IIb fibres 5 and 14 days after VP16-PPARδ 

transfection and in control groups 
CSA values are presented in mean ± SEM (µm2). PPARδ transfected IIa, IIx and IIb fibres had a significantly 

reduced CSAs compared to sham transfected and normal controls both 5 (hatched columns) and 14 days (open 

columns) after transfection (p<0.001) (*). There were no significant differences between the control groups 

(p>0.05). 
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3.4 SDH activity 

 Relative SDH activity levels of muscle fibres from the three experimental groups were 

measured both five and fourteen days after transfection and data are presented in mean ± SEM 

for each fibre type in table 3.3/figure 3.6.  

Normally, the hierarchy of SDH activity level among fibre types in the EDL and 

mixed muscles in general is I>IIa>IIx>IIb (Rivero et al., 1998; Nakatani et al., 1999), also 

confirmed by this study (table 3.3/figure 3.6).  

Table 3.3 Relative SDH activity level of EDL muscle fibres 5 and 14 days after VP16-PPARδ transfection 

and in control groups  

Time from transfection to muscle excision:       5 days:               14 days: 
Fibre type:  Experimental group: n Relative SDH-activity, 

mean ± SEM: 
n Relative SDH-activity, 

mean ± SEM: 
Normal 11 1.278 ± 0.063 16 1.248 ± 0.068 
Sham transfected 4 1.223 ± 0.020 4 1.490 ± 0.067 

I 

PPARδ transfected 3 1.406 ± 0.085 17 1.290 ± 0.059 
Normal 72 1.000 ± 0.037 79 1.006 ± 0.020 
Sham transfected 46 1.044 ± 0.029 28 1.043 ± 0.028 

IIa 

PPARδ transfected 19 1.170 ± 0.058 94   1.196 ± 0.022* 
Normal 111 0.472 ± 0.024 187 0.336 ± 0.012 
Sham transfected 79 0.410 ± 0.019 76 0.278 ± 0.013 

IIx 

PPARδ transfected 45 0.520 ± 0.078 94  0.824 ± 0.029* 
Normal 244 0.004 ± 0.015 336 -2.1*10-6 ± 0.014 
Sham transfected 155 -0.020 ± 0.019 135 -0.080 ± 0.008 

IIb 

PPARδ transfected 87    0.145 ± 0.038* 171    0.401 ± 0.035* 

Total number of analysed fibres: 876   1237   

Relative SDH values are presented in mean ± SEM for each fibre type. 5 days after transfection, PPARδ 

transfected IIb fibres had a significantly increased SDH activity level compared to sham transfected and normal 

controls (p<0.001) (*). 14 days after transfection, PPARδ transfected IIa, IIx and IIb fibres had a significantly 

increased SDH activity level compared to that of sham transfected and normal controls (p<0.001).  

The number of type I fibres was too small to perform statistical analysis on, and 

consequently they were excluded from further analysis. 

Five days after transfection, 876 fibres were analysed and their relative SDH activity 

levels are presented in table 3.3/figure 3.6 (hatched columns). PPARδ transfected IIb fibres 

showed a significant increase in SDH activity level compared to normal IIb fibres (p<0.001) 

and sham transfected IIb fibres (p<0.001). On average, the SDH activity of PPARδ 

transfected IIb fibres increased to 0.145 when that of normal IIb fibres was defined as 0 and 

that of normal IIa fibres as 1 (figure 3.6C, hatched columns). There were no significant 

differences between sham transfected and normal IIb fibres (p>0.05), nor between PPARδ 
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transfected, sham transfected and normal IIa and IIx fibres (p>0.05) (figure 3.6A, B, hatched 

columns).  

 Fourteen days after transfection, 1237 fibres were analysed and their relative SDH 

activity levels are presented in table 3.3/figure 3.6 (open columns). PPARδ transfected IIa 

fibres showed a significant increase in SDH activity level compared to normal IIa fibres 

(p<0.001) and sham transfected IIa fibres (p<0.01). On average, the SDH activity of PPARδ 

transfected IIa fibres increased to 1.196 when that of normal IIa fibres was set to 1 and that of 

normal IIb fibres to 0 (figure 3.6A, open columns). The SDH activity of PPARδ transfected 

IIx fibres on average increased to 0.705 compared to normal IIx fibres (p<0.001), having a 

mean SDH activity level of 0.336, and sham transfected IIx fibres (p<0.001) (figure 3.6B, 

open columns). The SDH activity level of PPARδ transfected IIb fibres increased 

significantly compared to normal IIb fibres (p<0.001) and sham transfected IIb fibres 

(p<0.001). On average, the SDH activity level of PPARδ transfected IIb fibres increased to 

0.401 when that of normal IIa fibres was set to 1 and that of normal IIb fibres to 0 (figure 

3.6C, open columns). There were no significant differences in SDH activity between the 

controls; the sham transfected and the normal IIa, IIx and IIb fibres (p>0.05).  

Figure 3.6 A, B, C Relative SDH activity levels of IIa, IIx and IIb fibres 5 and 14 days after VP16-PPARδ 

transfection and in control groups 

Relative SDH levels are presented in mean ± SEM. 5 days after transfection, PPARδ transfected IIb fibres had a 

significantly increased SDH activity level compared to controls (p<0.001) (*) (hatched columns). 14 days after 

transfection, PPARδ transfected IIa, IIx and IIb fibres had significantly increased SDH activity level compared 

to that of sham transfected and normal controls (p<0.001) (open columns). There were no significant differences 

between the control groups (p>0.05). 
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3.5 Wild type PPARδ expression  

 Histochemical staining for PPARδ expression was performed on muscle cross sections 

from normal non-treated rats in order to visualize potential differences in expression patterns 

between one typical fast leg muscle, EDL, and one typical slow leg muscle, SOL. Expression 

patterns were compared to SDH activity level, MyHC expression and localization of nuclei by 

histochemical staining of neighbouring sections.  

3.5.1 Wild type PPARδ expression in normal rat EDL 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Serial sections of normal rat EDL stained for PPARδ, SDH activity, nuclei, MyHC I and IIa 

Serial cross sections stained for PPARδ expression (A), SDH activity level (B), localization of nuclei (C), MyHC 

I (D) and MyHC IIa (E). Cytosolic PPARδ expression was uniform and weak, although some fibres, such as 1-6 

were distinguished by even weaker expression. These showed nucleic PPARδ expression (A/C), had the highest 

SDH activity level (B) and 1-3, 5 expressed MyHC IIa (E).  Scale bars: 50 µm.  
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 As can be seen from figure 3.7, there was a relatively uniform and weak cytosolic 

PPARδ signal in normal rat EDL. Seven muscles were stained and this pattern was confirmed 

in all, in addition to in two muscles from NMRI mice (data not shown).  

On close examination, some fibres showed distinctly weaker cytosolic PPARδ 

expression than the majority; all having a small CSA and a high SDH activity; characteristics 

of type I and IIa fibres in EDL, for instance fibres 1, 2, 3 and 5 in figure 3.7. Some of these 

fibres expressed PPARδ in nuclei, such as for example fibres 2 and 3 in figure 3.7.    

3.5.2 Wild type PPARδ expression in normal rat SOL 

The SOL muscle is a typical slow muscle exclusively composed of oxidative fibres. 

MyHC fibre type composition of WISTAR rat SOL has previously been reported to be 72 % 

type I, 25 % type IIa, 3 % type IIx and 0 % type IIb. As opposed to in EDL, the SDH activity 

of IIa fibres in SOL is higher than that of type I fibres, and type I fibres have the largest CSA 

(Nakatani et al., 1999), also confirmed by this study. 

   

 

 

 

 

 

 

 

Figure 3.8 Serial sections of normal rat SOL stained for PPARδ, SDH activity, nuclei and MyHC IIa 

Serial cross sections stained for PPARδ expression (A), SDH activity level (B), localization of nuclei (C) and 

MyHC IIa (D). Fibres 1-8 had the highest SDH activity level (B), expressed MyHC type IIa (D) and expressed 

PPARδ at the highest cytosolic level (A). Other fibres were type I and expressed PPARδ in nuclei. Scale bars: 50 

µm.  
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As can be seen from figure 3.8, there was a strong correlation between cytosolic 

PPARδ expression and SDH activity level in muscle fibres from normal rat SOL. Fibres 

having the highest SDH activity levels (fibres 1-8) also expressed PPARδ at the highest 

cytosolic levels (fibres 1-8), and also in nuclei. Fibres 1-8 were all identified as type IIa, 

shown in figure 3.8D. Additionally, there was a consistency between the observed strength of 

cytosolic PPARδ expression, SDH activity level and MyHC expression. For example, fibre 

number 5 had a relatively low cytosolic PPARδ expression, a somewhat lower SDH activity 

level and was probably a MyHC IIa/IIx hybrid. Apart from fibres 1-8, other fibres seen in 

figure 3.8 were all type I fibres, and expressed PPARδ only in the nuclei. No IIx fibres were 

observed.  

 100 % of fibres positive for cytosolic PPARδ expression, similar to fibres 1-8 in figure 

3.8A, expressed MyHC type IIa. These were also the fibres with the highest SDH activity 

levels observed both in previous studies and in this. A total of 289 cytosolic PPARδ positive 

fibres from two muscles were analysed; all being type IIa and all being the ones with the 

relatively highest SHD activity. 

The expression pattern of PPARδ in EDL and SOL is summarized in table 3.4.  

Table 3.4 Cytosolic and nucleic localization of wild type PPARδ protein as observed in normal rat EDL 

and SOL 

Muscle: Subcellular localization of PPARδ: I IIa IIx IIb 

EDL Nucleic + + - - 

SOL Nucleic ++ + - - 

EDL Cytosolic - - + + 

SOL Cytosolic - ++ NA NA 

Scale: - (no detectable signal), + (signal), ++ (strong signal),  

NA (not available; no IIx and IIb fibres were observed in SOL) 
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4 DISCUSSION 

 The present study show that overexpression of an intrinsically active PPARδ (VP16-

PPARδ) in EDL muscles of adult rats affect MyHC expression, SDH activity level and CSA 

of individual fibres in a slow and oxidative direction. SDH activity and fibre size were 

affected already after five days, while changes in MyHC fibre type were detected after 

fourteen days, when a significantly higher proportion of IIa fibres and a significantly lower 

proportion of IIb fibres, was observed. Furthermore, immunohistochemical data from wild 

type muscle indicated higher levels of PPARδ in nuclei of slow/oxidative fibres than in 

fast/glycolytic fibres. The findings that nucleic PPARδ level is highest in slow/oxidative 

fibres and that PPARδ has the ability to activate a slow gene program, suggest that PPARδ 

might function as a mediator of adult muscle plasticity. Surprisingly; IIa, IIx and IIb fibres 

expressed PPARδ in the cytosol. This variability in subcellular distribution might indicate that 

not only the level, but also the translocation of PPARδ, could be regulated.  

4.1 PPARδ and its effect on MyHC expression of skeletal muscle fibres 

Contractile proteins are among the most stable of all proteins. MyHC expression has 

previously been shown to be regulated mainly at the transcriptional level (Izumo et al., 1986), 

and to have a relatively slow turnover rate (Martin et al., 1977). However, the rates of 

synthesis have been shown to be faster for MyHC I and IIa than for IIx and IIb in male 

WISTAR rat EDL, and MyHC IIb has been shown to have the most stable expression (Maier 

et al., 1988). As reported by Maier et al. (1988), MyHC type IIa has a turnover period of 6-10 

days, MyHC IIx 14-21 days and type IIb 10-14 days. Furthermore, Maier and co-workers 

observed that an initial increase in type IIa fibres (6-10 days) was accompanied by a moderate 

decrease in type IIb fibres in rat EDL after chronical slow stimulation using implanted 

electrodes, followed by an extensive decrease in type IIb fibres 14-21 days after the onset of 

stimulation. These results are consistent with the results from this study, also observing fast to 

slow transformation in the same muscle, rat strain and gender. The effect on type IIa fibres 

was significant; a doubling in the proportion of IIa was observed fourteen days after VP16-

PPARδ transfection. Moreover, no effect was seen on the IIx population, and the increase in 

IIa fibres was accompanied by a decrease in type IIb fibres. As could have been predicted 

from the turnover rates, no effect was observed on fibre type transformation five days after 

transfection. 
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Fibre type transformations have previously been shown to include stages in which two 

MyHC subtypes are co-expressed (Maier et al., 1988; Pette & Staron, 1997; Windisch et al., 

1998). The far most frequent hybrid fibres in the EDL would be the IIa/IIx and IIx/IIb fibre 

types, but these are not possible to detect by certainty as there to date is no available IIx 

antibody (only a non-IIx antibody). Consequently, we were unable to detect a possible and 

likely increase in hybrid fibres after PPARδ transfection. Furthermore, we may have 

overestimated the number of “pure” IIa (possibly IIa/IIx hybrids) and IIb fibres (possibly 

IIx/IIb hybrids). In the view of this, our results represent a conservative estimate of the 

transformations caused by overexpression of active PPARδ.  

Endurance training may induce fast to slow MyHC transitions in muscle fibres 

(Andersen & Henriksson, 1977; Baumann et al., 1987; Fitzsimons et al., 1990; Sullivan et al., 

1995; Demirel et al., 1999; Mercier et al., 1999; Andersen et al., 2000; Allen et al., 2001). As 

PPARδ was shown to induce similar effects, PPARδ is a potential candidate mediating 

adaptation to endurance training in adult skeletal muscle. Indeed, an increase in the PPARδ 

protein content following endurance training in mice and humans has been reported (Luquet 

et al., 2003; Mahoney et al., 2005). This regulation of the expression level of PPARδ itself 

has been confirmed in our group by micro array analysis of mRNA levels in EDL and SOL, 

and in the same muscles subjected to slow and fast electrical stimulation, respectively (Rana 

et al., unpublished). The signal intensity had the following order: SOL WT>EDL slow 

stimulated>EDL WT>SOL fast stimulated; showing that a slow electrical activity pattern up-

regulated PPARδ expression level. Moreover, treatment of wild type rodents with a synthetic 

PPARδ agonist has been shown to increase the expression of genes involved in the slow 

twitch contractile apparatus, such as myoglobin and troponin I slow, but not MyHC, and to 

decrease the expression of troponin I fast (Wang et al., 2004; Barish et al., 2006). These 

results, in addition to the results from our study, indicate that activation of PPARδ in adult 

animals may induce changes in contractile properties of skeletal muscle fibres in slow 

direction.    

4.2 PPARδ and its effect on cross sectional area of skeletal muscle fibres  

 Cross sectional area of muscle fibres is associated with MyHC expression and 

oxidative state. In EDL and mixed muscles in general, type I fibres normally have the smallest 

CSA, type IIb fibres the largest and type IIa and IIx fibres intermediate CSAs. Furthermore, 

there is an inverse relationship between CSA and SDH activity level for the different fibre 

types (Rivero et al., 1998; Nakatani et al., 1999). These correlations were also observed in 
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this study, and may be explained by the fact that slow twitch fibres with high oxidative 

capacity and good endurance are in need of constant supply of oxygen and nutrition from the 

blood, in part ensured by short diffusion distances.  

 Endurance training may induce reductions in CSA of individual skeletal muscle fibres, 

previously observed in endurance trained rats and fast rat muscles subjected to slow electrical 

stimulation (Brown et al., 1976; Tamaki, 1987; Demirel et al., 1999). As an active PPARδ 

was shown to promote similar CSA reductions, the effects on CSA seen after endurance 

training in adult animals might be mediated by PPARδ. Another transcription factor linked to 

slow activity, myogenin, has also been shown to induce reduced CSAs of type II fibres when 

overexpressed in EDL of mice (Ekmark et al., 2003). However, when ligand dependent 

PPARδ was overexpressed in skeletal muscle using a cre/lox approach, no effect was seen on 

the CSAs of the different muscles (Luquet et al., 2003). The CSA of individual fibres was not 

measured by Luquet and co-workers, only that of the whole muscle, and the receptor was not 

activated by exogenous ligands or in an intrinsically active form, possibly explaining the lack 

of observed effect of PPARδ overexpression on muscle CSA.  

4.3 PPARδ and its effect on oxidative capacity of skeletal muscle fibres 

 Results from this study show that reductions in cross sectional area are accompanied 

by increased SDH activity levels of PPARδ transfected EDL fibres. This is in accordance with 

the inverse relationship between SDH activity level and CSA observed by others (Rivero et 

al., 1998; Nakatani et al., 1999). The results also show that changes in CSA and oxidative 

capacity of individual fibres precede changes in MyHC expression.   

Endurance training frequently increases the oxidative metabolism of skeletal muscles 

without inducing MyHC transitions (Baldwin et al., 1972; Fitts et al., 1975; Holloszy & 

Booth, 1976; Dudley et al., 1982; Demirel et al., 1999; Carter et al., 2001). Holloszy & Booth 

(1976) suggested that the increase in oxidative capacity following endurance exercise was a 

result of an increased number of, increased size of, or altered quality of mitochondria. This 

hypothesis has later been confirmed in several studies (Hoppeler et al., 1973; Kiessling et al., 

1974; Katsuta et al., 1988). As an active PPARδ was shown to increase the SDH activity of 

individual muscle fibres, effects of endurance training on oxidative capacity might be 

mediated by PPARδ, just as another slow transcription factor, myogenin, has been shown to 

induce increased SDH activity of type II fibres when overexpressed in mice EDL (Ekmark et 

al., 2003). However, an increase in the SDH activity level of IIb fibres was detected before 
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that of IIa and IIx fibres, already five days after PPARδ transfection. This might be explained 

by the low starting level, and hence greater potential for increase, of IIb fibres in EDL.  

Further support for a role of PPARδ in the regulation of oxidative metabolism and 

adaptation to endurance training has been found by looking at the expression patterns of 

possible PPARδ target genes. Luquet et al. (2003) observed an up-regulation of three 

oxidative enzymes; SDH, citrate synthase (CS) and β-hydroxyacyl-CoA dehydrogenase 

(BOAC) after transgenic overexpression of PPARδ in skeletal muscle, using a cre/lox 

approach. Conversely, activities of glycolytic enzymes remained unchanged. Two other 

proteins involved in fatty acid oxidation were also up-regulated: uncoupling protein 2 (UCP-

2) and heart fatty acid binding protein (H-FABP). In the same study they observed a 

considerable increase in the number of SDH positive fibres in the fast tibialis anterior of 

double transgenic mice, when analyzing histological sections. Although no effect was 

observed on MyHC expression or CSA of muscles, overexpression of PPARδ resulted in 

changes in the muscles reminiscent of adaptations promoted by endurance training. Wang et 

al. (2004) reported an up-regulation of several genes involved in oxidative metabolism and 

mitochondrial biogenesis after transgenic overexpression of the intrinsically active VP16-

PPARδ in skeletal muscle, and mitochondrial DNA was increased significantly in 

gastrocnemius of the transgenic mice. Treatment of wild type mice with a specific agonist 

even induced the similar target genes, among them PGC-1α, further supporting the hypothesis 

of a role for PPARδ in the regulation of oxidative capacity of muscle fibres. 

4.4 Expression patterns of PPARδ in wild type skeletal muscle  

It has previously been shown that PPARδ mRNA and protein levels are higher in 

homogenates from the slow SOL than fast EDL muscle (Wang et al., 2004). However, we are 

the first to investigate the precise fibre type distribution and the subcellular localization of the 

PPARδ protein in muscle fibres.  

The distinct subcellular localization patterns of PPARδ under normal conditions imply 

PPARδ in the regulation of a slow and oxidative phenotype in adult skeletal muscle, and 

might indirectly link level of expression and subcellular localization to muscle activity. 

Observations from histological staining of normal SOL and EDL muscles were summarized 

in table 3.4 (section 3.5.2). Fibre types I and IIa had PPARδ localized to nuclei while fibre 

types IIx and IIb had PPARδ localized to cytosol. However, type IIa fibres of SOL 

additionally expressed PPARδ in the cytosol, i.e. all type II fibres expressed PPARδ in the 

cytosol, while type I fibres showed only nucleic expression. As PPARδ functions in the 
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nucleus, and has been implicated in the regulation of a slow and oxidative phenotype of adult 

muscle fibres in the first part of this study, the high levels of nucleic staining found in 

slow/oxidative type I and IIa fibres were expected, and further supported the hypothesis of a 

role for PPARδ in the regulation of a slow and/or oxidative phenotype. Furthermore, by 

observing the stained sections, we got the impression that the total level of PPARδ protein in 

SOL and EDL was consistent with previous findings from muscle homogenates; SOL>EDL 

(Wang et al., 2004), also implying PPARδ in the regulation of a slow/oxidative phenotype.  

The observation of high cytosolic PPARδ levels, however, was surprising. Shown by 

Berger et al. (2000), the nuclear import of PPARs is not dependent on binding of ligand, but 

rather a constitutive shuttle of translated protein from the cytoplasm to the nucleus. However, 

the nucleo-cytoplasmic shuttling of PPARγ has been shown to be influenced by bacterial 

infection (Kelly et al., 2004), and activity dependent translocation of the slow transcription 

factor NFAT has recently been shown in skeletal muscle (Tothova et al., 2006). Based on the 

latter publications and the observation in this study that fast/glycolytic fibre types show 

cytosolic expression whereas slow/oxidative fibres show nucleic expression, we hypothesize 

that translocation of PPARδ to the nucleus might be mediated by slow activity. This would 

constitute a completely new mechanism of action and level of regulation of PPARδ and of the 

PPAR family as a whole. PPARδ activity has previously been shown to be regulated at the 

transcriptional level (Luquet et al., 2003; Mahoney et al., 2005) and at the level of ligand or 

dimerization partner activation (Kliewer et al., 1992; Keller et al., 1993; Xu et al., 1999; 

Wang et al., 2004), but also by cofactors (Berger & Moller, 2002; Krogsdam et al., 2002; 

Gilde & Van Bilsen, 2003; Wang et al., 2003) and possibly by phosphorylation (Gilde & Van 

Bilsen, 2003; Diradourian et al., 2005; Gelman et al., 2005). The proposed activity dependent 

translocation might involve Ca2+ dependent phosphorylation prior to translocation, with Ca2+ 

transient levels being the initial mediator of slow activity. This potential regulation of nuclear 

translocation in adult animals might also constitute a new target mechanism for the 

pharmaceutical industry in pharmacological treatment of metabolic diseases.  

4.5 PPARδ’s role in the excitation-transcription coupling in skeletal muscle 

Previous publications have hypothesized that PPARδ is a mediator in the excitation-

transcription coupling in skeletal muscles, based on results from transgenic models (Luquet et 

al., 2003; Wang et al., 2004). This work shows that PPARδ is a probable mediator in these 

signalling pathways also in adult animals, and indicate a possible link to slow activity and 

endurance training which previously have been shown to promote similar transformations.  
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While endurance training might induce changes in the expression levels of PPARδ 

(Luquet et al., 2003; Mahoney et al., 2005), another hypothesis is that changes in the levels of 

FFAs and FA metabolites accompanying muscle activity itself, serve as signals for changes in 

muscle phenotype by activating PPARδ. Physiological conditions associated with a rise in the 

concentration of FFAs and increased FAO are long-time fasting and endurance exercise. 

Treatment of wild type rodents with a synthetic PPARδ agonist has, as mentioned, been 

shown to increase the expression of genes involved in the slow twitch contractile apparatus 

(Wang et al., 2004; Barish et al., 2006), supporting the hypothesis of ligands serving as 

internal signals for muscle adaptation to slow activity. Furthermore, the level of PPARδ 

protein seems to be under nutritional control, being dramatically up-regulated in 

gastrocnemius muscle of mice after a 24 hour starvation period, and restored to control levels 

upon refeeding (Holst et al., 2003). An up-regulation of fatty acid translocase/CD36 

(FAT/CD36) and H-FABP in gastrocnemius after the starvation period was also reported, 

paralleling mRNA levels of PPARδ, also these levels being restored to normal upon 

refeeding. These results support the hypothesis of ligands serving as internal signals for 

adaptation to fasting, another physiological condition in which the muscle adapts to lipid 

catabolism. Possibly functioning as a lipid “sensor”, PPARδ is able to induce genes involved 

in oxidative metabolism and mitochondrial biogenesis, ensuring supplies of ATP when levels 

of carbohydrates are low. 

 A model of the mechanism of action of PPARδ in muscle adaptation to endurance 

exercise and long-time fasting is shown in figure 4.1.  

 

 

 

 

 

 

 

 

Figure 4.1 Proposed mechanism of action for PPARδ in muscle adaptation to endurance exercise and 

long-time fasting, and in the prevention of development of obesity and diabetes II 

Activation of PPARδ by endogenous or synthetic ligands is proposed to induce a skeletal muscle remodelling in 

slow direction and increasing oxidation of fatty acids, resulting in an anti-obesity effect. The resulting reduced 

supply of free fatty acids for lipogenesis in adipose tissue gives smaller adipocyte sizes, a normalization of 

adipocytokine levels and an insulin sensitizing effect in peripheral tissue (anti-diabetic effect).  
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However, there are different hypotheses concerning the role of PPARδ in the 

excitation-transcription signalling network. Several lines of evidence support an interaction 

between PPARδ and co-activator PGC-1α (Wu et al., 1999; Lehman et al., 2000; Puigserver 

& Spiegelman, 2003). Tanaka et al. (2003) showed that activation of PPARδ by the selective 

agonist GW501516 induced PGC-1α mRNA levels in vitro and in vivo, an effect accompanied 

by increased mitochondrial biogenesis, and identified a highly conserved PPRE in the PGC-

1α promoter. Wang et al. (2003) identified an in vivo association between PPARδ and PGC-

1α in nuclear extracts from gastrocnemius muscle, suggesting that the thermogenic function 

of PGC-1α might be mediated by PPARδ and that PGC-1α might be an activator of PPARδ in 

muscle. Lin et al. (2002) showed that overexpression of PGC-1α in transgenic mice induced 

the formation of slow twitch fibres of skeletal muscle, with increased myoglobin content and 

induction of genes involved in oxidative metabolism; essentially the same muscle remodelling 

observed when the intrinsically active PPARδ was overexpressed in transgenic mice by Wang 

et al. (2004). Furthermore, the results from this study and from Luquet et al. (2003) support 

the hypothesis of a role for PPARδ in the formation and maintenance of oxidative, slow 

twitch fibres in skeletal muscle. Endurance training has previously been shown to increase 

both the level of PGC-1α (Goto et al., 2000) and PPARδ (Luquet et al., 2003; Mahoney et al., 

2005) in rodents and humans. Collectively, these results support a role for both PPARδ and 

PGC-1α in the excitation-transcription coupling in skeletal muscle, probably working in 

concert mediating a slow and oxidative phenotype. However, Wang et al. (2004) has also 

implicated PPARδ as a potential downstream transcription factor in the CaN or CaMK 

signalling pathways. A possible model of the role of PPARδ in the excitation-transcription 

coupling is presented in figure 4.2.  

Figure 4.2 Proposed role of 

PPARδ in the excitation-

transcription coupling in 

skeletal muscle 

PPARδ is suggested as a mediator 

of slow activity, influencing on 

the expression of slow and 

oxidative muscle specific genes.  
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4.6 Roles of PPARδ in health and disease  

“Metabolic syndrome”, typified by diabetes II, obesity, hyperlipidaemia and 

cardiovascular diseases, has reached epidemic proportions in western societies. These 

pathologies are associated with a combination of excessive lipid intake and lack of physical 

exercise, yet the actual molecular mechanisms leading to the metabolic syndrome have not 

been fully clarified  (Fredenrich & Grimaldi, 2004; Berge et al., 2005; Eckel et al., 2005; 

Grimaldi, 2005; Grundy, 2005; Sarti & Gallagher, 2006). The risk factors, however, are 

directly influenced by diet, metabolism and physical activity.  

Skeletal muscle is a major mass peripheral tissue and accounts for more than 30% of 

the energy expenditure of the body. Muscle is the primary tissue of insulin stimulated glucose 

uptake, disposal and storage, and also influences metabolism by modulation of lipid flux 

(Smith & Muscat, 2005; Barish et al., 2006). Fat accumulation in adipose tissue and 

especially in muscle is known to predispose for insulin resistance (Perseghin et al., 1999; 

Unger & Orci, 2000; Fasshauer & Paschke, 2003; Luquet et al., 2003; Luquet et al., 2004; 

Perseghin, 2005). Consequently, skeletal muscle metabolism plays a significant role in insulin 

sensitivity, blood lipid profile, obesity and physical fitness.  

Metabolism is largely regulated by nuclear hormone receptors functioning as 

transcription factors (Beaven & Tontonoz, 2006), among these PPARδ. PPARδ was in this 

study shown to affect oxidative capacity and MyHC fibre type of adult skeletal muscle, and to 

possibly be regulated at the level of nuclear translocation.  

These results may have useful therapeutic applications as muscle fibre type 

composition previously has been shown to be associated with obesity, weight loss and 

diabetes II. Skeletal muscles of obese and diabetic II patients have been shown to have 

reduced oxidative capacity, increased glycolytic capacity and a decreased percentage of type I 

fibres (Abou et al., 1992; Hickey et al., 1995; Tanner et al., 2002). Furthermore, single 

nucleotide polymorphisms (SNPs) in the PPARδ gene have also been associated with obesity. 

Out of nine SNPs identified, five were significantly associated with obesity (Shin et al., 

2004). Vänttinen et al. (2005) found associations between muscle insulin sensitivity and three 

SNPs, while an association between one SNP and concentrations of HDL and LDL 

cholesterol was found by Skogsberg et al. (2003).  

Treatment with synthetic PPARδ agonists has been shown to improve the lipid profile 

of mice and monkeys and to reverse diet-induced obesity and insulin resistance of mice 

(Leibowitz et al., 2000; Oliver et al., 2001; Tanaka et al., 2003; Wang et al., 2003; Wang et 
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al., 2004; Grimaldi, 2005; Staels & Fruchart, 2005). Experimental evidence coming from both 

in vitro and in vivo approaches has indicated that both adipose tissue and skeletal muscle play 

important roles in the lipid-lowering and anti-diabetic actions of PPARδ activators, affecting 

mainly plasma lipid levels, total adiposity and adipocytokine production (Unger & Orci, 

2000; Fasshauer & Paschke, 2003; Evans et al., 2004; Luquet et al., 2004).  

As with any drug anticipated in the treatment of diseases, safety issues concerning 

possible side effects of non-tissue-specific PPARδ agonists, have been raised. Particular 

attention has focused on a potential connection to carcinogenesis, as PPARδ is expressed at a 

high level in colon tumours and has been ascribed an oncogenic function after being identified 

as a direct transcriptional target of β-catenin (He et al., 1999). This hypothesis was further 

reinforced by the demonstration that colon cancer cells in which PPARδ had been knocked 

out, failed to form tumours in mice (Park et al., 2001). However, carcinogenic function was 

not confirmed by Barak et al. (2002) nor by Harman et al. (2004), with the latter group 

actually showing that PPARδ attenuates colon carcinogenesis. The implication of PPARδ in 

carcinogenesis is still a matter of debate, however, a non-tissue-specific PPARδ agonist is in 

these days undergoing clinical trials in obese and diabetic patients (GlaxoSmithKline) 

(Martindale, 2004). The potential regulated nuclear translocation in muscle, implicated by this 

study, may have possible applications in the development of a muscle specific drug to avoid 

potential adverse side effects.  

4.7 Future perspectives 

To possibly link regulation of the PPARδ protein to specific patterns of activity, 

protein levels in muscles subjected to different patterns of electrical stimulation could be 

measured on Western blots or visualized on histological sections. As to the potential 

regulation of nuclear translocation of PPARδ, it would be interesting to histochemically stain 

sections from other wild type muscles than SOL and EDL, like the fast tibialis anterior and 

mixed gastrocnemius muscle, and sections from electrically stimulated muscles. To further 

investigate this possible activity mediated nuclear translocation of PPARδ, PPARδ-GFP 

fusion proteins similar to what has been done for NFAT, could be made (Tothova et al., 

2006). Muscles could be subjected to different patterns of stimulation and transfected fibres 

directly observed by in vivo imaging (Bruusgaard et al., 2003; Rana et al., 2005).  

Based on the effects on MyHC expression seen in the overexpression study fourteen 

days after transfection, it would be interesting to extend the time period from transfection to 

muscle excision. As observed by Maier et al. (1988), transformation of type IIx and IIb fibres 
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in rat EDL after chronic slow stimulation was greatest 14-21 days after the onset. An 

increased observation period was not possible because of immune responses to β-

galactosidase or bacterial antigens from the expression system (McMahon et al., 1998), 

however promising DNA purification procedures might allow longer periods of exposure 

(Chen et al., 2005).  

 Another interesting gain-of-function approach than the one performed in this study, 

would be to activate endogenous PPARδ in vivo by delivery of agonists locally in the muscle. 

This could be done by implanting mini-osmotic pumps, delivering naturally occurring lipids, 

the synthetic metabolically active fatty acid TTA or the specific agonist GW501516. Results 

could indirectly link PPARδ to endurance activity, a condition in which the concentration of 

FFAs is naturally high.  

Conceptually, loss-of-function experiments are more powerful than overexpression 

studies in determining the relative importance of a molecular mechanism. As most PPARδ 

null mice die (Peters et al., 2000; Barak  et al., 2002) and the few surviving null mice have 

developmental impairments, a better approach might be to look at phenotypic properties of 

individual muscle fibres where the PPARδ gene is knocked out. Muscle specific single cell 

“knock-outs” could be made by injecting siRNA in vivo, using electroporation as described by 

Golzio et al. (2005). This method is essentially the same as the one used in the overexpression 

studies of this work. Muscle specific single cell “knock-outs” could also be made by using a 

cre/lox approach combined with intracellular injections and electroporation of cre expression 

vectors.  

Promoter analysis of fibre type specific genes could be another approach to establish 

the role of PPARδ in the excitation-transcription coupling. By examining promoter regions of 

potential target genes, one can possibly find out whether or not PPARδ mediates activity 

effects by direct or indirect transcriptional control of target genes. More specific, this work 

would include the search for conserved PPREs upstream of typical slow or oxidative genes, 

such as troponin I slow, PGC-1α, MyHC I/IIa or SDH. Furthermore, ChIP assays (Chromatin 

immunoprecipitation) could be performed in order to determine if these genes are direct 

targets of PPARδ.  
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4.8 Conclusions 

1. Overexpression of an intrinsically active PPARδ (VP16-PPARδ) in the EDL muscle of 

adult rats induced significant phenotypic changes in slow and oxidative direction, shown by 

changes in MyHC expression from fast to slow isotype, reduction in CSA and increased SDH 

activity of transfected fibres, compared to controls. 

2. There is a differential expression pattern of the wild type PPARδ protein among 

different muscles and fibre types with respect to level of expression and subcellular 

localization. High levels of PPARδ in cell nuclei were correlated to an oxidative and slow 

phenotype, while high cytosolic levels were correlated to a fast and glycolytic phenotype. 

These differences in subcellular localization could reflect that nuclear translocation is 

regulated and imply PPARδ in the regulation of a slow and/or oxidative phenotype.   

These findings suggest a role for PPARδ in the excitation-transcription coupling in 

adult skeletal muscle, regulating a slow and oxidative phenotype. This PPARδ signalling 

pathway may be important during muscle adaptation to endurance exercise in adult animals.  
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5 APPENDICES 

5.1 Appendix A 

5.1.1 Equithesin (1 ml) 

(Sykehusapoteket ved Rikshospitalet, Norway, catalogue number 601284)  

Chloralhydrate 42.5 mg 
Magnesiumsulphateheptahydrate 21.0 mg 
Pentobarbital 9.7 mg 
Ethanol (96 %) 76.0 mg 
Propyleneglycol 428.0 mg 
dH20  
 

5.1.2 pAP-lacZ DNA solution (100 µl) 

pAP-lacZ in H2O (2 µg/µl) 50 µl 
4 M NaCl 4 µl 
dH20 46 µl 
 

5.1.3 pCMX-VP16-PPARδ and pAP-lacZ DNA solution (100 µl) 

pCMX-VP16-PPARδ in H2O (2 µg/µl) 25 µl                                
pAP-lacZ in H2O (2 µg/µl) 25 µl                            
4 M NaCl 4 µl 
dH20 46 µl 
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5.1.4 Staining for β-galactosidase activity 

1. Thaw the sections to room temperature 

2. Make the fixation solution: 

(Para)Formalaldehyde  
(Electron Microscopy Sciences) 

2.0 g                                 

Gluteraldehyde                                        
(Electron Microscopy Sciences) 

400 µl                          

10x PBS (pH 7.1) 10.0 ml 
dH20 69.2 ml 

Solve the formalaldehyde in dH2O (60ºC), adjust volume to 100 ml and pH to 7.1. 

3. Fixate the sections at 4ºC for 20 minutes by encircling the sections using a 

hydrophobic pen (H-4000, Vector) and applying a large drop of solution 

4. Wash the sections in PBS (pH 7.1), 3x 5 minutes 

5. Make the β- galactosidase staining solution: 

10x PBS (pH 7.1) 150 µl        
0.2 M Potassium Ferrocyanide 30 µl           
0.2 M Potassium Ferricyanide 30 µl           
1 M MgCl2 3 µl             
dH20 1260 µl 
X-gal (50 mg in DMSO) (Promega) 30 µl  

6. Stain over night at 37ºC 

7. Wash the sections in PBS (pH 7.1), 3x 5 minutes 

8. Mount the sections in glycerine gel: 

Gelatine (PROLABO) 15 g  
Glycerol (Invitrogen) 100 ml  
dH2O 100 ml 
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5.1.5 Staining for SDH activity 

1. Make the 0.2 M phosphate buffer (pH 7.4): 

Sodium phosphate (MERCK) 22.72 g 
Potassium phosphate (MERCK) 5.40 g 
dH2O 1000 ml 
Solve the salts in the water and adjust pH to 7.4 

2. Make the 0,2 M sodium succinate substrate solution: 

Sodium succinate (FLUKA Chemika) 16.2 g 
dH2O 500 ml 
Solve the sodium succinate in the water. 

3. Make the SDH staining solution: 

0,2 M phosphate buffer 5 ml 
0,2 M sodium succinate solution 5 ml 
Nitro Blue Tetrazolium (NBT) 10 mg 
 

4. Incubate the sections with staining solution for 45 minutes at 37ºC, after having 

encircled the sections with a hydrophobic pen  

5. Make the fixation solution described in appendix A, 5.1.4 

6. Fixate the sections at 4ºC for 20 minutes 

7. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

8. Mount the sections in glycerine gel as described in appendix A, 5.1.4 
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5.1.6 Staining for MyHC isoform  

Staining for MyHC I, MyHC IIa and MyHC non-IIx: 

1. Use a hydrophobic pen to encircle the muscle sections 

2. Dilute the primary antibody 1:2000 in 1 % BSA in PBS (pH 7.4) 

3. Incubate the sections with the primary antibody for 60 minutes in room temperature 

4. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

5. Dilute the secondary antibody 1:200 in 0.5 % BSA in PBS (pH 7.4) 

6. Incubate the sections with the secondary antibody for 30 minutes at 37ºC 

7. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

Staining for MyHC IIb: 

1. Use a hydrophobic pen to encircle the muscle sections 

2. Dilute the primary antibody 1:2000 in 0.5 % BSA in PBS (pH 7.4) 

3. Incubate the sections with the primary antibody for 45 minutes at 37ºC 

4. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

5. Dilute the secondary antibody 1:300 in 0.5 % BSA in PBS (pH 7.4) 

6. Incubate the sections with the secondary antibody for 45 minutes at 37ºC 

7. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

MyHC: Primary 
antibody: Secondary antibody: 

I BA-D5 Rabbit anti-mouse IgG, FITC conjugated (SIGMA, F-9137) 
IIa SC-71 Rabbit anti-mouse IgG, FITC conjugated (SIGMA, F-9137) 
Non-IIx BF-35 Rabbit anti-mouse IgG, FITC conjugated (SIGMA, F-9137) 
IIb BF-F3 Anti-mouse IgM, Cyt 3 (J115-165-020, Jackson 

ImmunoResearch Laboratories) 
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5.1.7 Staining for VP16 expression  

1. Use a hydrophobic pen to encircle the muscle sections 

2. Dilute the primary antibody 1:300 in 1 % BSA in PBS (pH 7.4) 

3. Incubate the sections with the primary antibody for 60 minutes in room temperature 

4. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

5. Dilute the secondary antibody 1:500 in 0.5 % BSA in PBS (pH 7.4) 

6. Incubate the sections with the secondary antibody for 30 minutes at 37ºC 

7. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

Primary antibody: Secondary antibody: 
Rabbit IgG anti-VP16                        
(SIGMA, V4388) 

Goat fluorescein anti-rabbit IgG (H+L)     
(FI-1000, Vector Laboratories Inc.) 

5.1.8 Staining for PPARδ expression 

1. Use a hydrophobic pen to encircle the muscle sections 

2. Dilute the primary antibody 1:100 in 1 % BSA in PBS (pH 7.4) 

3. Incubate the sections with the primary antibody for 60 minutes in room temperature 

4. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

5. Dilute the secondary antibody 1:500 in 0.5 % BSA in PBS (pH 7.4) 

6. Incubate the sections with the secondary antibody for 30 minutes at 37ºC 

7. Wash the sections in PBS (pH 7.4), 3x 5 minutes 

Primary antibody: Secondary antibody: 
Rabbit polyclonal IgG anti-PPARδ                 
(Sc-7197, Santa Cruz Biotechnology Inc.) 

Goat fluorescein anti-rabbit IgG (H+L)     
(FI-1000, Vector Laboratories Inc.) 

5.1.9 Staining for localization of nuclei 

1. Use a hydrophobic pen to encircle the muscle sections 

2. Dilute the nucleic acid stain solution 1:1000 in PBS (pH 7.4) 

3. Apply a drop of the diluted stain solution directly to the sections and incubate for 5-10 

seconds 

4. Wash in PBS (pH 7.4) for 1 minute 

Nucleic acid stain solution: 
Hoechst (33342, Molecular Probes, catalogue nr. H-3570) 
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5.2 Appendix B 

5.2.1 Abbreviations 

ATP  Adenosine triphosphate 

bHLH  Basic helix-loop-helix 

BOAC  β-hydroxyacyl-CoA dehydrogenase 

CaM  Calmodulin 

CaN  Calcineurin 

CaMK  Calmodulin dependent protein kinase 

ChIP  Chromatin immunoprecipitation 

CMV  Cytomegalovirus 

CS  Citrate synthase 

CSA  Cross sectional area 

DNA  Deoxyribonucleic acid 

EDL  musculus extensor digitorum longus 

FA  Fatty acid 

FAO  Fatty acid oxidation 

FAT/CD36 Fatty acid translocase/CD36  

FFA  Free fatty acid 

FITC  Fluorscein 

GFP  Green fluorescent protein 

HDL  High density lipoprotein 

HEK-293 Human embryonic kidney cells 293 

H-FABP  Heart fatty acid binding protein  

HRP  Horse radish peroxidase 

HSV  Herpes simplex virus 

Ig  Immunoglobin 

KS  Kolmogorov-Smirnov 

LDL  Low density lipoprotein 

MAPK  Mitogen activated protein kinase 
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mATPase Myosin adenosine triphosphate –ase 

MEF2  Myocyte enhancer factor 2 

mRNA  Messenger ribonucleic acid 

MyHC  Myosin heavy chain 

MyLC  Myosin light chain 

NFAT  Nuclear factor of activated T cells 

PGC-1α PPAR gamma coactivator 1 alpha 

PKC  Protein kinase C 

PPAR   Peroxisome proliferator-activated receptor 

PPARα  Peroxisome proliferator-activated receptor alpha 

PPARδ Peroxisome proliferator-activated receptor delta 

PPARγ Peroxisome proliferator-activated receptor gamma 

PPRE  Peroxisome proliferator-activated receptor responsive element 

RSV  Rouse sarcoma virus 

RXR  9-cis-retinoid X receptor 

SDH  Succinate dehydrogenase 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel 

SEM  Standard error of the mean 

siRNA  Small interfering RNA 

SNP  Single nucleotide polymorphism 

SOL  musculus soleus 

SV  Simian virus 

TTA  Tetradecylthioacetic acid 

UCP-2  Uncoupling protein 2 

V  Volt 

VP16   Herpes simplex virus transactivator protein 16 

X-gal  5-bromo-4-chloro-3-indolyle-β-D-galactoside
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