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Abstract

Myosin light chain 2 (MLC2) is a small protein in the myosin complex, regu-

lating muscle contractile function by modulating Ca2+ sensitivity of myofila-

ments. MLC2 can be modified by phosphorylation and O-GlcNAcylation, two

reversible and dynamic posttranslational modifications. The slow isoform of

MLC2 (sMLC2) is dephosphorylated in soleus muscle during in situ loaded

shortening contractions, which correlates with reduction in shortening capac-

ity. Here, we hypothesize that exhausting in vivo treadmill running induces

dephosphorylation of MLC2 in slow twitch soleus, but not in fast twitch EDL

muscle, and that there are reciprocal changes in MLC2 O-GlcNAcylation. At

rest, both phosphorylation and O-GlcNAcylation of MLC2 were lower in slow

than fast twitch muscles. One bout of exhausting treadmill running induced

dephosphorylation of sMLC2 in soleus, paralleled by reduced levels of the

kinase MLCK2 associated to myofilaments, suggesting that the acute reduction

in phosphorylation is mediated by dissociation of MLCK2 from myofilaments.

O-GlcNAcylation of MLC2 did not change significantly, and seems of limited

importance in the regulation of MLC2 phosphorylation during in vivo run-

ning. After 6 weeks of treadmill running, the dephosphorylation of sMLC2

persisted in soleus along with reduction in MLCK2 both in myofilament- and

total protein fraction. In EDL on the contrary, phosphorylation of MLC2 was

not altered after one exercise bout or after 6 weeks of treadmill running.

Thus, in contrast to fast twitch muscle, MLC2 dephosphorylation occurs in

slow twitch muscle during in vivo exercise and may be linked to reduced

myofilament-associated MLCK2 and reduced shortening capacity.

Introduction

Repeated muscle activity leads to a decline of muscle

function known as fatigue. Fatigue typically develops dur-

ing daily activities like walking or running, and involves

decline in muscle force development, shortening and

relaxation. However, the mechanisms that mediate fatigue

are complex and not fully understood (for review see

Allen et al. (2008)). Posttranslational modifications

(PTMs) like phosphorylation and O-GlcNAcylation of

myofilament proteins can alter protein function and affect

fatigue development in working muscles (Fitts 2008;

Cieniewski-Bernard et al. 2009). One of these myofila-

ment proteins is regulatory myosin light chain 2 (MLC2),

that together with the essential myosin light chain 1 wrap

around the neck of the myosin heavy chain, providing

mechanical support (Lowey and Trybus 2010).

MLC2 can be modified by phosphorylation at Ser15 by

the skeletal muscle myosin light chain kinase (MLCK2)

(reviewed by Stull et al. (2011)), and phosphorylation is
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thought to promote the movement of the myosin head

toward actin, increasing the Ca2+ sensitivity of the con-

tractile apparatus (Persechini et al. 1985; Stull et al.

2011). We have previously reported dephosphorylation of

slow isoform of MLC2 (sMLC2) in slow twitch soleus

muscle during in situ loaded shortening contractions

(Munkvik et al. 2009; Hortemo et al. 2013). This was well

correlated with a decline in muscle shortening (fatigue),

suggesting that sMLC2 phosphorylation participate in the

regulation of shortening capacity in slow twitch muscle

by modulating Ca2+ sensitivity of myofilaments. In fast

twitch skeletal muscle, tetanic isometric stimulation is

associated with increased MLC2 phosphorylation and

posttetanic twitch potentiation, while no such potentia-

tion is seen in slow twitch skeletal muscle (Vandenboom

et al. 2013). This suggests that MLC2 is differently regu-

lated in fast and slow twitch muscle.

O-GlcNAcylation of skeletal muscle proteins is recently

suggested to be a regulator of skeletal muscle function

(reviewed by Cieniewski-Bernard et al. (2014b)). Several

contractile proteins have been described to be O-GlcNA-

cylated (Cieniewski-Bernard et al. 2004, 2012; Hedou

et al. 2007; Ramirez-Correa et al. 2008), including MLC2,

and it is believed that phosphorylation and O-GlcNAcyla-

tion could interplay (i.e., called phospho-GlcNAc

modulation) in tuning the functional properties of

MLC2. However, to our knowledge, the effects of exercise

on phospho-GlcNAc modulation of MLC2 in skeletal

muscle have not been investigated.

Phosphorylation and O-GlcNAcylation are O-linked,

reversible and dynamic PTMs at serine and threonine resi-

dues, and O-GlcNAcylation is hence different from irre-

versible N-linked glycosylation in the endoplasmic

reticulum-Golgi (for review, see Hart et al. (2011)). The

specific site for O-GlcNAcylation on skeletal muscle MLC2

has not been determined, but in rat cardiac MLC2 the O-

GlcNAcylation site is the same as the phosphorylation site

(Ser15) (Ramirez-Correa et al. 2008), corresponding to the

phosphorylation site in rat skeletal muscle MLC2.

The enzymes responsible for phosphorylation–dephos-
phorylation of MLC2 in skeletal muscle are MLCK2 and

myosin light chain phosphatase (MLCP), respectively

(reviewed by Stull et al. (2011)). MLCP is composed of

the catalytic subunit of protein phosphatase 1 beta

(PP1B), the myosin phosphatase targeting protein

(MYPT2), and the small unit M20 of unknown function.

Modulation of protein O-GlcNAcylation is achieved by

two evolutionary conserved enzymes, O-GlcNAc transfer-

ase (OGT) and O-GlcNAcase (OGA). OGT and OGA

antagonistically add and remove the O-linked GlcNAc to

serine or threonine residues, comparative to protein phos-

phorylation by kinases and phosphatases. Interestingly,

MLCK2, MYPT2, PP1, OGT, and OGA were recently

shown to exist in a multienzymatic complex at the sarco-

mere (Cieniewski-Bernard et al. 2014a).

In this study, we hypothesized that the phospho-Glc-

NAc pattern is different in slow versus fast twitch muscle

at rest, and that the effects of in vivo treadmill running

on MLC2 phosphorylation are different between the two

muscle types. Specifically, an important aim of our study

was to determine if there is dephosphorylation of sMLC2

in slow twitch muscle during in vivo running and

whether there are reciprocal changes in MLC2 O-GlcNA-

cylation. Finally, we measured MLCK2, MLCP, OGT, and

OGA in the muscle homogenate and in the myofilament

protein subfraction since the amount of these enzymes

might explain the degree of MLC2 phosphorylation and

O-GlcNAcylation.

Materials and Methods

Ethical approval

All experiments were performed in accordance with the

Norwegian Animal Welfare Act. Protocols were reviewed

and approved by the Norwegian Animal Research

Authority (ID 3383 and 3301) and conformed to the NIH

Guide for the Care and Use of Laboratory Animals. Male

Wistar and Sprague Dawley rats (Taconic, Skensved, Den-

mark) were housed in a controlled environment (temper-

ature 22 � 2°C, humidity 55 � 5%, 12/12 h daylight/

night cycle) for 1 week after arrival before included in the

study. Rats were fed standard rat chow (B & K Universal,

Oslo, Norway) and water ad libitum.

Treadmill running – One exercise bout

Male Wistar rats ~300 g (n = 18) were acclimatized to

the treadmill for 15 min the last 2 days prior to the

experiment (5 min at 8 m�min�1, 10 min at

12 m�min�1). At the day of the experiment, rats were

randomly assigned to three different groups; the run

(RUN) group performed one exercise bout to fatigue on

the treadmill; the recovery (REC) group performed one

exercise bout and were subsequently allowed 24 h rest,

and the control (CTR) group remained sedate. The exer-

cise was performed at 12.5° inclination with incremental

running speed, starting at 8 m�min�1 and increasing every

second min toward maximum running speed of the indi-

vidual rat. The exercise protocol was continued until

exhaustion, defined as when the rat was unable to con-

tinue running at the maximum running speed. Rats in

the RUN group were at the end of exercise immediately

anaesthetized in a chamber with 4% isoflurane (Forene�)

and sacrificed by neck dislocation, and within 1 min after

termination of the exercise protocol soleus and extensor
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digitorum longus (EDL) muscles were harvested and

snap-frozen in liquid nitrogen and stored at �80°C until

analysis. Rats in the REC group were at the end of exer-

cise allowed rest, food, and water ad libitum for 24 h

before muscles were harvested.

In situ exercise protocol

The in situ exercise protocol was performed essentially as

described previously (Munkvik et al. 2009). In short, male

Wistar rats ~300 g (n = 9) were anaesthetized, intubated

and placed on a respirator, and the soleus muscle was

prepared in situ keeping the blood supply intact. The dis-

tal tendon of soleus was fastened to a combined force

and length transducer, and the muscle was intermittently

electrically stimulated to perform fatiguing shortening

contractions toward a preset load (1/3 of maximal tetanic

force). The temperature was kept at 37°C by preheated

0.9% NaCl running over the epimysium of the muscle. At

the end of the experiment, the soleus muscle from the

stimulated (i.e., exercised; EX) leg was harvested and

snap-frozen in liquid nitrogen within 10 sec after termi-

nation of contractions, and subsequently the soleus mus-

cle from the resting control (CTR) leg was harvested and

snap-frozen within 1 min before the animals were killed

by neck dislocation while still anaesthetized.

Treadmill running – Six weeks

Male Sprague Dawley rats ~280 g (n = 14) were ran-

domly assigned to perform a 6 weeks interval training

program (RUN) on the treadmill (Columbus Instruments,

Colombus, OH) or to remain sedate (CTR). One week

acclimatization was performed with running velocity

6 m�min�1 for 30, 45, 60, 75, 90, and 120 min, respec-

tively, and 1 day with rest. Interval training was then per-

formed 6 days a week at 25° inclination; 10 min warm-

up (10 m�min�1) followed by 12 9 8 min intervals sepa-

rated by 2 min resting periods (6 m�min�1). The running

speed during intervals was 15 m�min�1 the first week,

then increasing with 2 m�min�1 each week. Rats were

given 0.1–0.2 g chocolate (Kvikk Lunsj, Freia, Oslo,

Norway) and free access to water after accomplishing

each training session. Rats not able to fulfill the exercise

protocol were withdrawn from the study. After the last

training session (after 6 weeks), rats were allowed rest for

24 h before the muscles were harvested; rats were anes-

thetized in a chamber and subsequently mask-ventilated

by 3% isoflurane and 97% O2, and within 3 min after

onset of anesthesia the soleus and EDL muscles were dis-

sected and snap-frozen in liquid nitrogen before the ani-

mals were sacrificed by cardiac excision while still

anaesthetized.

Protein extraction

Total protein lysates were made by pulverizing muscles in

a mortar with liquid nitrogen and subsequently homoge-

nizing with a Polytron� 1200 in ice-cold lysis buffer

(20 mmol�L�1 Hepes pH 7.5, 150 mmol�L�1 NaCl,

1 mmol�L�1 EDTA, 0.5% Triton X-100) with protease

inhibitors (Complete EDTA-free tablets; Roche Diagnos-

tics, Grenzach, Germany), phosphatase inhibitors (Phos-

STOP, Roche Diagnostics), and 40 mmol�L�1

glucosamine (Sigma-Aldrich, Oslo, Norway) to provide

excess substrate for OGA (Lunde et al. 2012). The homo-

genates were stored on ice for 30 min before they were

centrifuged at 20,000 g for 30 min at 4°C. Supernatants
were stored at �80°C until subsequent analysis.

Myofibrillar protein extracts were made by pulverizing

muscles in a mortar with liquid nitrogen. Ice cold

6.35 mmol�L�1 EDTA solution with protease inhibitors,

phosphatase inhibitors, and 40 mmol�L�1 glucosamine

were added and the muscles samples were homogenized

with Polytron� 1200, stored on ice for 30 min, and cen-

trifuged at 18,000 g for 10 min at 4°C. Pellets were

washed with 50 mmol�L�1 KCl containing protease inhib-

itors, phosphatase inhibitors, and glucosamine, and

centrifuged for another 10 min. The final pellets were

resuspended in 50 mmol�L�1 KCl containing protease

inhibitors, phosphatase inhibitors, and glucosamine, and

stored at �80°C.

Immunoblotting

Protein concentrations in lysates were determined using

the Micro BCA Protein Assay Kit (Pierce/Thermo Scien-

tific, Oslo, Norway) and 20–90 lg of protein was loaded

on 1.0 mm 4–15% or 15% Tris-HCl gels (Criterion, BIO-

RAD, Oslo, Norway). SDS-PAGE and Western blotting

were performed essentially as described in the Criterion

BIORAD protocol, using PVDF Hybond membranes

(Amersham/GE Healthcare, Oslo, Norway). Blots were

blocked in either 5% nonfat dry milk or 5% BSA for 1 h

at room temperature, and incubated with primary and

secondary antibodies overnight at 4°C and 1 h at room

temperature, respectively.

Primary antibodies were anti-O-GlcNAc CTD110.6

(MMS-248R; Covance, Oslo, Norway), anti-MLC2 pSer15

(AP08007PU-N; Nordic BioSite, T€aby, Sweden), anti-

MLC2 (F109.3E1; BioCytex, Oslo, Norway), anti-MLCK2

(sc-9456; Santa Cruz Biotechnology [SCB], Heidelberg,

Germany), anti-MYPT2 (sc-292988; SCB), anti-PP1B

(ab53315; Abcam, Cambridge, UK), anti-OGT (O6264;

Sigma-Aldrich), anti-OGA (SAB4200267; Sigma-Aldrich),

anti-GAPDH (sc-20357; SCB), anti-a-tubulin (sc-5286;

SCB), and anti-CS (ab96600; Abcam). Blots were incu-
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bated with appropriate anti-HRP-conjugated secondary

antibodies from Southern Biotechnology (Birmingham,

AL), developed using the ECL Plus Western Blotting

Detection System (Amersham/GE Healthcare) and visual-

ized in the Las-4000 mini (Fujifilm, Stockholm, Sweden).

Blots were reprobed after stripping using the Restore

Western Blot Stripping Buffer (21059; Thermo Scien-

tific). Quantification of protein band intensity and pro-

cessing of immunoblots was performed using

ImageQuant (GE Healthcare) and Adobe Photoshop

CS5.

Calculation of MLC2 phosphorylation and
O-GlcNAcylation

O-GlcNAcylation level was detected by a global O-Glc-

NAc antibody CTD110.6 with subsequent stripping and

overlay with MLC2. The phosphorylation level was

detected using a site-specific phospho-antibody recogniz-

ing MLC2 pSer15. The sequence of probing was; O-Glc-

NAc, stripping, MLC2 pSer15, stripping, MLC2. The

efficiency of stripping and the specificity of antibodies

were confirmed in a control experiment (Fig. 1). Further,

A

E
F

G

H

I
J

B

C

D

Figure 1. Specificity of antibodies and efficiency of stripping method. Myofilament protein extract from soleus (~80 lg) and EDL (~65 lg)

muscle from control rat (CTR) and after one exercise bout (RUN) separated on 15% SDS-PAGE, blotted and blocked. (A) Probing with anti-O-

GlcNAc antibody (CDT 110.6) and (B) anti-O-GlcNAc antibody together with 0.15 M GlcNAc (GlcNAc, 01140; Sigma-Aldrich) on a parallel blot

illustrated the specificity of the anti-O-GlcNAc antibody. The blot in A was stripped with Restore Western Blot Stripping Buffer (Thermo

Scientific) for 50 min, washed and blocked, before the blot was reprobed with secondary antibodies (C) anti-Mouse and (D) anti-Rabbit,

showing efficient stripping of the O-GlcNAc signal. The stripping and blocking procedure was repeated, and (E) the stripped blot and (F) a

parallel fresh blot were probed with anti-pMLC2. The same signal pattern was displayed in the reprobed blot as in the fresh blot. The blot in E

was then stripped and blocked once more, before probed with secondary antibodies (G) anti-Rabbit and (H) anti-Mouse. Anti-Rabbit produced

a weak signal in EDL when the exposure time was increased (G), while anti-Mouse (which was the secondary antibody that should be used in

the subsequent probing with anti-MLC2) did not produce any signal. The blot was stripped and blocked one last time, before (I) reprobed with

anti-MLC2 in parallel with (J) anti-MLC2 on a fresh blot, showing the same signal pattern in the reprobed blot as in the fresh blot.
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parallel control blots with anti-O-GlcNAc antibody RL2

(MA1-072; Thermo Scientific) revealed essentially the

same pattern as with anti-O-GlcNAc antibody CTD 110.6

(data not shown), but the sensitivity of RL2 to recognize

O-GlcNAc-modified proteins was somewhat inferior to

CTD 110.6, and we therefore used CTD 110.6 in all our

analyses. By using the pan MLC2 antibody (F109.3E1),

the different isoforms sMLC2 and fMLC2 could easily be

distinguished by their different molecular weight (Fig. 2A,

lower panel). Staining intensity of sMLC2 and fMLC2 in

EDL was calculated relative to the staining intensity of

these proteins in soleus to compare the level in fast versus

slow twitch muscle, and equal protein loading was

ensured by Coomassie staining (not shown).

Statistics

Data are expressed as means � SEM relative to control, if

not otherwise specified. For all tests, P < 0.05 was consid-

ered significant. Differences between two groups were

tested using Student’s paired- or unpaired t-test. The sta-

tistical analyses were performed by means of SigmaPlot

(Systat Software Inc, version 12.5, Erkrath, Germany) or

Microsoft Excel 2010 (Microsoft, Oslo, Norway).

Results

Different phospho-GlcNAc pattern of MLC2
in soleus versus EDL

MLC2 isoform distribution, MLC2 phosphorylation, and

MLC2 O-GlcNAcylation were measured by immunoblot-

ting in soleus and EDL (Fig. 2A). As expected, the expres-

sion of sMLC2 was highest in soleus, while fMLC2 was

most abundant in EDL (Fig. 2B). Interestingly, in resting

muscle both sMLC2 and fMLC2 phosphorylation (Fig. 2C)

and O-GlcNAcylation (Fig. 2D) were significantly higher

in fast twitch EDL compared to slow twitch soleus.

To assess levels of enzymes regulating MLC2 phosphor-

ylation and O-GlcNAcylation, MLCK2 (90 kDa), MYPT2

(110 kDa), PP1B (36 kDa), OGT (110 kDa), and OGA

(130 kDa) in total protein lysate from resting soleus and

EDL muscles were measured by immunoblotting

(Fig. 2E). The level of MLCK2 was more than two times

higher in EDL compared to soleus (Fig. 2F), while

MYPT2 barely was detectable in EDL, but abundant in

soleus. Further, the expression of both OGT and OGA

were significantly lower in EDL compared to soleus.

In the myofilament protein fraction from soleus and

EDL (Fig. 2G) all the enzymes analyzed in the total pro-

tein extract were detected, suggesting that each enzyme

can be found in conjunction with the contractile appara-

tus. The level of MLCK2 in the myofilament fraction (i.e.

myofilament MLCK2) was more than three times higher

in EDL than in soleus, and MYPT2 was abundant in

soleus but barely detectable in EDL (Fig. 2H), well com-

patible with the higher MLC2 phosphorylation in EDL

compared to soleus (Fig. 2C). Further, the level of OGA

on myofilaments was lower in EDL compared to soleus,

which fits the higher O-GlcNAc level of MLC2 in EDL

(Fig. 2D). Successful fractioning of myofilament proteins

was confirmed by Sypro Ruby gel staining and immuno-

blotting with marker proteins of different subcellular

compartments (Fig. 3).

One bout of treadmill running causes
dephosphorylation of sMLC2 in soleus

Maximum running speed of the animals that performed

one exhausting exercise bout (n = 10) was on average

20 � 1 m�min�1, and the time to exhaustion was

26 � 1 min. In soleus, phosphorylation of sMLC2 was

significantly decreased after one exhausting bout of

treadmill running (RUN), and was restored to control

values after 24 h recovery (REC) (Fig. 4A and B). O-Glc-

NAcylation of sMLC2 was nominally, but not signifi-

cantly increased after one exercise bout (P = 0.07), and

was not different from control after 24 h recovery

(Fig. 4C).

sMLC2 phosphorylation is strongly
correlated to myofilament MLCK2

One short exercise bout is not expected to alter total pro-

tein expression, and accordingly the enzyme expression in

the total protein lysate did not change after one exhaust-

ing exercise bout (Fig. 4D and E). However, in the myo-

filament fraction, the level of MLCK2 was significantly

reduced after one exercise bout (RUN), and was restored

to control level after 24 h recovery (REC) (Fig. 4F and

G). There were no concomitant changes in MYPT2,

PP1B, OGT, or OGA. Thus, the variation in sMLC2

phosphorylation after exercise and recovery covaried with

the presence of MLCK2 associated to myofilaments,

showed by a positive correlation (P < 0.0001) (Fig. 4H).

The reduction in myofilament MLCK2 is
rapid

To further investigate the association between sMLC2

phosphorylation and myofilament MLCK2, we included

experiments using the in situ exercise protocol. Already

after 100 sec in situ exercise (EX), there was parallel

reduction in muscle shortening (Fig. 4I) and sMLC2

phosphorylation (Fig. 4J), and in accordance with the

results from the in vivo treadmill exercise, the reduction
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in sMLC2 phosphorylation was accompanied by reduced

levels of myofilament MLCK2 (Fig. 4K). Thus, reduction

in myofilament MLCK2 is linked to reduced sMLC2

phosphorylation also in the in situ model, indicating a

rapidly responding mechanism in shortening muscle that

performs work.

A

E F

G H

B C D

Figure 2. Different phospho-GlcNAc pattern of MLC2 in slow twitch soleus and fast twitch EDL muscle. (A) Representative immunoblots of

phosphorylated-, O-GlcNAcylated- and total MLC2 (s, slow isoform; f, fast isoform), and mean data for (B) total- (C) phosphorylated- and (D)

O-GlcNAcylated MLC2 in myofilament protein fraction from soleus (white bars) and EDL (black bars). (E) Representative immunoblots of

enzymes regulating MLC2 phosphorylation and O-GlcNAcylation analyzed in total protein lysate, and (F) mean data for the enzymes in E. (G)

Representative immunoblots of enzymes regulating MLC2 phosphorylation and O-GlcNAcylation analyzed in the myofilament protein fraction,

and (H) mean data for the enzymes in G. Data are mean � SEM. Staining intensities in EDL were calculated relative to the staining intensities

in soleus. Tubulin was used as loading control for total protein data, MLC2 for myofilament protein data. N = 4 SOL, 4 EDL. *P < 0.05 versus

SOL.
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Six weeks treadmill running induces
persistent dephosphorylation of sMLC2 in
soleus

Rats that accomplished the 6 week interval training signifi-

cantly increased their running speed during intervals from

15 m�min�1 to 25 m�min�1, and had lower body weight

compared to sedate controls (339 � 9, n = 6 vs. 444 �
9 g, n = 6; P < 0.05). Expression of CS, a mitochondrial

enzyme catalyzing the first reaction in the citric acid cycle

and a marker of muscle oxidative capacity, was increased

in soleus by 63 � 4% (n = 4 + 4; P < 0.001) in the exer-

cise group compared to sedate controls, indicating

increased oxidative capacity of the trained muscles.

Muscles were harvested 24 h after the last day of the

6 weeks exercise program. Hence, acute effects of exercise

were not investigated in this cohort, but the focus was on

long term effects of exercise training. In soleus, sMLC2

phosphorylation was significantly and persistently

decreased after 6 weeks exercise training (RUN) com-

pared to sedate controls (CTR) (Fig. 5A and B). The

sMLC2 O-GlcNAcylation was not altered in RUN com-

pared to CTR (Fig. 5C).

The persistently reduced sMLC2 phosphorylation after

6 weeks exercise training was paralleled by sustained

reduction of MLCK2, both in the total protein lysate

(Fig. 5D and E) and in the myofilament fraction

(Fig. 5F and G). OGA was reduced in the total protein

lysate (Fig. 5D and E). The reduced expression of

MLCK2 and OGA in the total protein lysate indicates

enzyme regulation at the transcriptional level after

6 weeks exercise training, different from after one exer-

cise bout.

Treadmill running does not affect phospho-
GlcNAc pattern of MLC2 in fast twitch EDL

Remarkably, in contrast to soleus, no differences were

found in fMLC2 phosphorylation (Fig. 6A and B) or

fMLC2 O-GlcNAcylation (Fig. 6C) in EDL after one bout

of treadmill running or after recovery. In accordance with

this, none of the enzymes analyzed (MLCK2, MYPT2,

PP1B, OGT, OGA) were altered after one exercise bout in

EDL, neither in the total protein lysate nor in the myofil-

ament fraction (data not shown). There was neither any

significant difference in phospho-GlcNAc pattern of

MLC2 or enzyme expression in EDL after 6 weeks exer-

cise training (data not shown).

Discussion

In this study we show dephosphorylation of the regula-

tory protein sMLC2 in slow twitch soleus muscle after

exhausting in vivo treadmill running. The phosphoryla-

tion level was strongly correlated to the level of the

kinase MLCK2 associated to myofilaments, indicating a

rapid mechanism to regulate contractile function.

O-GlcNAcylation of MLC2 did not change significantly,

and seems less important in the regulation of MLC2

phosphorylation during in vivo exercise. The pattern of

MLC2 phosphorylation in slow twitch muscle is differ-

ent from the pattern in fast twitch muscle, and our

data support that dephosphorylation of sMLC2 in slow

twitch muscle may be linked to reduced shortening

capacity of the muscle.

A B

Figure 3. Protein content of total protein lysate and myofilament

protein extract from rat soleus muscle. (A) Total protein lysate (Total)

and myofilament protein extract (Myofilament) from control rat

soleus muscle separated on 15% SDS-PAGE and the protein pattern

revealed by Sypro Ruby staining. (B) Total protein lysate (Total) and

myofilament protein extract (Myofilament) analyzed by western blot

to identify protein markers of different subcellular fractions. Sarco/

endoplasmic reticulum Ca2+-ATPase (SERCA2) was used as a marker

of membrane proteins, succinate dehydrogenase (SDH) as a

mitochondrial protein marker, actin and MLC2 as markers of

myofilament proteins, GAPDH as a cytosolic marker and Histone H3

as a nuclear protein marker. The blots show that the myofilament

fraction contained high levels of myofilament proteins (actin and

MLC2), while no SERCA2, SDH, GAPDH or Histone H3 were detected.
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Figure 4. One bout of treadmill running causes dephosphorylation of sMLC2 in soleus that is correlated with reduced myofilament MLCK2. (A)

Representative immunoblots, and average data of (B) phosphorylated and (C) O-GlcNAcylated sMLC2 in soleus resting control (white bars,

CTR), after one exercise bout (black bars, RUN) and after 24 h recovery (gray bars, REC). (D) Representative immunoblots of enzymes regulating

MLC2 phosphorylation and O-GlcNAcylation, analyzed in total protein lysate, and (E) mean data for the enzymes in D. (F) Representative

immunoblots of enzymes regulating MLC2 phosphorylation and O-GlcNAcylation, analyzed in the myofilament protein fraction, and (G) mean

data for the enzymes in F. (H) The variation in sMLC2 phosphorylation correlated strongly to the level of MLCK2 in the myofilament fraction. (I)

Shortening tracing of a representative 100 sec in situ exercise protocol, (J) sMLC2 phosphorylation and (K) myofilament MLCK2 in resting

control soleus muscle (white bars, CTR) compared to after 100 sec in situ exercise (black bars, EX). GAPDH was used as loading control for

total protein data, MLC2 for myofilament protein data. Data are mean � SEM relative to CTR. N = 5 (CTR), 6 (RUN), 4 (REC), 5 (100 sec,

MLC2 phosphorylation), 8 (100 sec, MLCK2). *P < 0.05 versus CTR. s, slow isoform; f, fast isoform.
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Basal phospho-GlcNAc pattern is
significantly different in soleus vs. EDL

The comparison between soleus and EDL revealed many-

fold higher levels of MLC2 phosphorylation and O-Glc-

NAcylation in EDL compared to soleus, corresponding

with profound differences in the expression of regulating

enzymes. This suggests that the functional role of phos-

phorylation and O-GlcNAcylation may be different in the

two muscle types. In EDL, the high expression of MLCK2

and the barely detectable level of MYPT2 favor a high

phosphorylation level of MLC2. In soleus, on the con-

A

E

F G

B C

D

Figure 5. Six weeks treadmill running induces persistent dephosphorylation of sMLC2 in soleus. (A) Representative immunoblots, and average

data of (B) phosphorylated and (C) O-GlcNAcylated sMLC2 in soleus resting control (white bars, CTR) and after 6 weeks exercise training (black

bars, RUN). (D) Representative immunoblots of enzymes regulating MLC2 phosphorylation and O-GlcNAcylation, analyzed in total protein

lysate, and (E) mean data for the enzymes in D. (F) Representative immunoblots of enzymes regulating MLC2 phosphorylation and

O-GlcNAcylation, analyzed in the myofilament fraction, and (G) mean data for the enzymes in F. GAPDH was used as loading control for total

protein data, MLC2 for myofilament protein data. Data are mean � SEM relative to control. N = 6 (CTR), 6 (RUN).*P < 0.05 versus CTR.

s, slow isoform; f, fast isoform.
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trary, the low levels of MLCK2 combined with abundant

expression of MYPT provide a plausible explanation of

the lower phosphorylation level of MLC2 in soleus. Con-

sistent differences in enzyme activity (Moore and Stull

1984) and expression (Ryder et al. 2007) of MLCK2 and

MLCP/MYPT2 between EDL and soleus have been

reported previously, supporting a fiber type-specific

regulation of MLC2 phosphorylation. Also in regard to

O-GlcNAcylation we find differences in enzyme levels,

especially lower OGA in the myofilament fraction in

EDL compared to soleus, well compatible with the higher

O-GlcNAcylation level of MLC2 in EDL.

The higher level of both phosphorylation- and O-Glc-

NAcylation of MLC2 in fast compared to slow twitch mus-

cle is interesting in light of a recent study which suggest

that no phosphorylated form of sMLC2 is at the same time

O-GlcNAcylated and vice versa (Cieniewski-Bernard et al.

2014a). If the two PTMs are mutually exclusive, our results

suggest that the proportion of unmodified MLC2 is high in

soleus, while on the contrary a large part of the total MLC2

in EDL is modified by either phosphorylation or O-GlcNA-

cylation. The phosphorylation site on skeletal muscle

MLC2 is Ser15, while the specific site for O-GlcNAcylation

has not been identified. However, in cardiac muscle the

only known O-GlcNAcylation site is the same as the phos-

phorylation site (Ser15) (Ramirez-Correa et al. 2008), and

it remains to determine whether this is the case also for

skeletal muscle MLC2.

Reversible dephosphorylation of sMLC2 in
soleus after one bout of treadmill running

An important finding of the present study was the

reduced phosphorylation of sMLC2 in slow twitch soleus

muscle after one bout of in vivo exhausting treadmill

running, fully reversible after 24 h rest. This finding sup-

ports the results from our previous in situ studies (Munk-

vik et al. 2009; Hortemo et al. 2013). In these studies,

repetitive in situ loaded shortening contractions of soleus

induced reversible reduction in muscle shortening corre-

lated with reversible dephosphorylation of sMLC2, sug-

gesting a role of sMLC2 in regulating shortening

contractions in slow twitch muscle. Interestingly, a role of

MLC2 in regulating loaded shortening contractions has

also been reported in cardiac muscle (Sanbe et al. 1999;

Scruggs and Solaro 2011; Toepfer et al. 2013).

Most previous experiments conducted on slow twitch

muscle in regard to sMLC2 phosphorylation have com-

prised in vitro or in situ isometric stimulation of short

duration, in unfatigued muscle. We have recently shown

that loaded shortening contractions (concentric contrac-

tions, i.e. work) that were associated to high metabolic

stress (drastic fall in muscle CrP, ATP and increase in

lactate) seem necessary to induce changes in sMLC2

phosphorylation in slow twitch muscle (Hortemo et al.

2013). There was on the contrary no or little alteration of

sMLC2 phosphorylation in slow twitch muscle when the

muscle performed solely isometric contractions or when

shortening was almost unloaded (Danieli-Betto et al.

2000; Hortemo et al. 2013), where in both situations the

metabolic stress is low. This implies that shortening con-

tractions trigger dephosphorylation of MLC2 in slow

twitch muscle only when the muscle performs work that

causes a metabolic stress, like the exhausting treadmill

running performed in the present study.

We demonstrate in the present study that the variation

in sMLC2 phosphorylation after one in vivo exercise bout

correlates strongly to the level of myofilament associated

MLCK2 (Fig. 4H). The observation is strengthened by

the additional in situ experiments where we find parallel

reductions in muscle shortening, sMLC2 phosphorylation

and myofilament MLCK2 already after 100 sec

A B C

Figure 6. In fast twitch EDL muscle, treadmill running does not affect the phospho-GlcNAc pattern of MLC2. (A) Representative immunoblots

of phosphorylated- and O-GlcNAcylated MLC2 in EDL and average data of (B) phosphorylated- and (C) O-GlcNAcylated fMLC2 in resting

control (white bars, CTR), after one exercise bout (black bars, RUN) and after 24 h recovery (gray bars, REC). Data are mean � SEM relative to

CTR. MLC2 was used as loading control. N = 4 (CTR), 5 (RUN), 4 (REC). s, slow isoform; f, fast isoform.
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(Fig. 4I–K). This reveals a rapidly responding system,

and we suggest that the reduction in myofilament

MLCK2 represents dissociation of the enzyme from the

myofilaments, reducing the amount of available kinase

in the proximity of sMLC2. MLCK2 was recently

shown to exist in a multienzymatic complex at the sar-

comere together with MLC2, OGT, OGA, MYPT2, and

PP1 (Cieniewski-Bernard et al. 2014a), supporting our

finding of MLCK2 in the myofilament protein fraction.

However, the specific binding site for MLCK2 on myo-

filaments remains to be identified.

Also the regulation of MLCK2 in slow twitch skeletal

muscle is poorly understood. In fast twitch muscle, the

same Ca2+ signal that initiates force development also

regulates MLCK2 activity; when calmodulin is saturated

with four Ca2+, the Ca2+/calmodulin complex bind to

MLCK2 and the regulatory segment on MLCK2 is dis-

placed, allowing interaction with MLC2 (Gao et al. 1995;

Ryder et al. 2007; Stull et al. 2011). Exercise could elevate

Ca2+/calmodulin and activate MLCK2, but this does not

fit the reduced phosphorylation of MLC2 that we

observed in slow twitch soleus muscle after in situ stimu-

lation (Munkvik et al. 2009; Hortemo et al. 2013) and

after in vivo exercise in the present study. In cardiac mus-

cle, there are ambiguous results whether the cardiac

MLCK2 is Ca2+/calmodulin-dependent or not (reviewed

by Scruggs and Solaro (2011)). Our data suggest that

Ca2+ activation of MLCK2 does not seem to be a major

regulator of the activity-dependent phosphorylation level

of sMLC2 in slow twitch muscle.

Dynamic interplay between phosphorylation and

O-GlcNAcylation of MLC2 has been suggested to partici-

pate in the regulation of skeletal and cardiac muscle

contractile function (Hedou et al. 2007; Ramirez-Correa

et al. 2008; Cieniewski-Bernard et al. 2009, 2012, 2014a;

Lunde et al. 2012). In our model of in vivo treadmill run-

ning, we did not detect significant changes in O-GlcNA-

cylation of MLC2. Thus, MLC2 O-GlcNAcylation does

not seem to be an important regulator of MLC2 phos-

phorylation during treadmill running although there was

a trend toward increased MLC2 O-GlcNAcylation after

one bout of treadmill running (P = 0.07). We cannot

exclude that this is a type II error since the stoichiometry

of O-GlcNAcylation is low and the immunoblot signal of

O-GlcNAcylated MLC2 in soleus is weak. Hindlimb

unloading was recently reported to induce a 400%

increase in sMLC2 phosphorylation in soleus, but only a

50% reduction in O-GlcNAcylation (Cieniewski-Bernard

et al. 2014a), suggesting that variations in MLC2 O-Glc-

NAcylation are smaller than variations in phosphoryla-

tion. More sensitive analysis methods and development of

site-specific anti-O-GlcNAc-antibodies are warranted to

detect subtle variations in protein O-GlcNAcylation.

Persistent dephosphorylation of sMLC2 in
soleus after six weeks treadmill running

In contrast to the full recovery of sMLC2 phosphoryla-

tion observed in soleus muscle 24 h after one single

exercise bout on the treadmill, sMLC2 was still dephos-

phorylated 24 h after the last training session following

6 weeks treadmill running. Also different from after

one single exercise bout, there was reduction in MLCK2

not only on myofilaments, but also in total protein

homogenate, indicating regulation at the transcriptional

level after 6 weeks treadmill running and providing a

plausible explanation to the persistent dephosphoryla-

tion of MLC2.

The animals increased their running speed significantly

after 6 weeks exercise, and the increased expression of CS

confirmed the training response biochemically. The persis-

tent dephosphorylation of sMLC2 could hence be a com-

ponent of an advantageous physiological adaption to

exercise. We speculate that the persistent dephosphoryla-

tion provides a beneficial restraint during long-lasting

exercise; postponing the fatigue development by limiting

the initial work performed and hence energy consumption.

Abbate et al. (2001) showed that the contraction economy

(muscle force/muscle energetics cost) was reduced when

MLC2 was phosphorylated compared to nonphosphory-

lated in fast twitch muscles from wild-type and MLCK2

knockout mice. This may suggest that during prolonged

activity, increased phosphorylation could cause adverse

metabolic changes, and that low levels of MLC2 phos-

phorylation in slow twitch soleus contribute to the fatigue

resistance in this muscle type.

Phospho-GlcNAc pattern of fast twitch EDL
is not altered by treadmill running

In fast twitch EDL muscle, in contrast to slow twitch

soleus, the phospho-GlcNAc level of MLC2 was not

modulated by treadmill running, and there was no

change in enzyme expression. This strongly indicates

that the regulation of phospho-GlcNAc of MLC2 in fast

twitch EDL is different from the regulation in slow

twitch soleus. The profound differences in enzyme levels

between soleus and EDL (Fig. 2H) could possibly by

large explain the dissimilar modulation of MLC2 during

exercise, and are likely important for the muscles’ func-

tional properties.

Our results highlight the importance of exploring slow

twitch muscle, not only fast twitch muscle as many inves-

tigators do, because the response to exercise and the

mechanisms of fatigue appear to be fundamentally differ-

ent in the two muscles. Moreover, to study loaded short-

ening (concentric) contractions at physiological
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temperature (37°C) is essential to understand the fatigue

development observed during daily life activities.

Conclusion

In conclusion, we report dephosphorylation of sMLC2 in

rat slow twitch muscle after exhausting in vivo treadmill

running, both in a single exercise bout and after 6 weeks

training. The reduction in sMLC2 phosphorylation is

strongly correlated to reduced level of myofilament

MLCK2, suggesting a novel mechanism to regulate con-

tractile function. O-GlcNAcylation of MLC2 did not

change significantly and seems of less importance in regu-

lating MLC2 phosphorylation during treadmill running.

In fast twitch EDL, the levels of phosphorylation and O-

GlcNAcylation of MLC2 are higher than in slow twitch

soleus at rest, but were not altered by treadmill running.

Thus, in contrast to fast twitch muscle, sMLC2 dephos-

phorylation occurs in slow twitch muscle during in vivo

exercise and may be linked to reduced level of myofila-

ment associated MLCK2 and reduced shortening capacity.

This provides an exciting basis for discovery of mecha-

nisms underlying fatigue in vivo during loaded shortening

contractions like walking and running.
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