864 research outputs found
Formulating State Space Models in R with Focus on Longitudinal Regression Models
We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms are marked in the formula. Special functions for specifying polynomial time trends, harmonic seasonal patterns, unstructured seasonal patterns and time-varying covariates can be used in the formula. The model is fitted to data using iterated extended Kalman filtering, but the formulation of models does not depend on the implemented method of inference. The package is demonstrated on three datasets.
Time trend and seasonality of community-acquried bacteremia in a Danish county as assessed from hospital registers
Repetitive Activation of the Corticospinal Pathway by Means of rTMS may Reduce the Efficiency of Corticomotoneuronal Synapses
Low-frequency rTMS applied to the primary motor cortex (M1) may produce depression of motor-evoked potentials (MEPs). This depression is commonly assumed to reflect changes in cortical circuits. However, little is known about rTMS-induced effects on subcortical circuits. Therefore, the present study aimed to clarify whether rTMS influences corticospinal transmission by altering the efficiency of corticomotoneuronal (CM) synapses. The corticospinal transmission to soleus α-motoneurons was evaluated through conditioning of the soleus H-reflex by magnetic stimulation of either M1 (M1-conditioning) or the cervicomedullary junction (CMS-conditioning). The first facilitation of the H-reflex (early facilitation) was determined after M1- and CMS-conditioning. Comparison of the early facilitation before and after 20-min low-frequency (1 Hz) rTMS revealed suppression with M1- (−17 ± 4%; P = 0.001) and CMS-conditioning (−6 ± 2%; P = 0.04). The same rTMS protocol caused a significant depression of compound MEPs, whereas amplitudes of H-reflex and M-wave remained unaffected, indicating a steady level of motoneuronal excitability. Thus, the effects of rTMS are likely to occur at a premotoneuronal site—either at M1 and/or the CM synapse. As the early facilitation reflects activation of direct CM projections, the most likely site of action is the synapse of the CM neurons onto spinal motoneuron
Surround inhibition in the primary motor cortex is task-specifically modulated in non-professional musicians but not in healthy controls during real piano playing
Research has indicated that at the onset of a finger movement, unwanted contractions of adjacent muscles are prevented by inhibiting the cortical areas representing these muscles. This so-called surround inhibition (SI) seems relevant for the performance of selective finger movements but may not be necessary for tasks involving functional coupling between different finger muscles. Therefore, the present study compared SI between isolated finger movement and complex selective finger movements while playing a three-finger sequence on the piano in nine non-professional musicians and 10 untrained control participants. Transcranial magnetic stimulation (TMS) was applied to the contralateral motor cortex to assess SI in the first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) during the movement preparation and the late phasic phases. The results reveal stronger SI during the preparation phase than during the phasic phase (30.6% vs. 10.7%; P 0.05). Thus, musicians were able to modulate SI between conditions whereas control participants revealed constant levels of SI. Therefore, it may be assumed that long-term training as observed in skilled musicians is accompanied by task-specific effects on SI modulation potentially relating to the ability to perform selective and complex finger movements
Assessing seasonality in count data - illustrated by incidence of acute myocardial infarction
- …
