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Abstract

We provide a language for formulating a range of state space models with response
densities within the exponential family. The described methodology is implemented in
the R-package sspir. A state space model is specified similarly to a generalized linear
model in R, and then the time-varying terms are marked in the formula. Special functions
for specifying polynomial time trends, harmonic seasonal patterns, unstructured seasonal
patterns and time-varying covariates can be used in the formula. The model is fitted to
data using iterated extended Kalman filtering, but the formulation of models does not
depend on the implemented method of inference. The package is demonstrated on three
datasets.
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1. Introduction

Generalized linear models, see McCullagh and Nelder (1989), are used when analyzing data
where response-densities are assumed to belong to the exponential family. Time series of
counts may adequately be described by such models. However, if serial correlation is present
or if the observations are overdispersed, these models may not be adequate, and several
approaches can be taken. The book by Diggle, Heagerty, Liang, and Zeger (2002) gives an
excellent review of many approaches incorporating serial correlation and overdispersion in
generalized linear models. Dynamic generalized linear models (DGLM), often called state
space models, also address those problems and are treated in a paper by West, Harrison, and
Migon (1985) in a conjugate Bayesian setting. They have been subject to further research
by e.g. Zeger (1988) using generalized estimating equations (GEE), Gamerman (1998) using
Markov chain Monte Carlo (MCMC) methods and Durbin and Koopman (1997) using iterated
extended Kalman filtering and importance sampling.
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2 Formulating State Space Models in R

Standard statistical software does not not include procedures for DGLMs and only sparse
support for Gaussian state space models. There is a need for a simple, yet flexible way of
specifying complicated non-Gaussian state space models. Often, one need to tailor make
software for each specific application in mind. A function, StructTS, has been developed for
analysis of a subclass of Gaussian state space models, see Ripley (2002). The binary library
SsfPack for Ox may be used freely for academic research and provides a tool set for analysis
of Gaussian state space models with some support for non-Gaussian models, see Koopman,
Shephard, and Doornik (1999). The interface is very flexible, but not as easy to use as a glm
call in R.

Section 2 describes Gaussian state space models and shows how generalized linear models can
naturally be extended to allow the parameters to evolve over time. We define components
(e.g. trend and seasonal components) that separate the time series into parts that may be
inspected individually after analysis. In Section 3 the syntax for defining objects describing
the proposed state space models are described as a simple, yet powerful, extension to the glm-
call in R (R Development Core Team 2006). The techniques are illustrated on three examples
in Section 4.

2. State space models

The Gaussian state space model for univariate observations involves two processes, namely the
state process (or latent process), {θk}, and the observation process, {yk}. The random vari-
ation in the state space model is specified through descriptions of the sampling distribution,
the evolution of the state vector, and the initialization of the state vector.

Let {yk} be measured at timepoints tk for k = 1, . . . , n. The state space model is defined by

yk = F>
k θk + νk, νk ∼ N (0, Vk) (1)

θk = Gkθk−1 + ωk, ωk ∼ Np(0,Wk) (2)
θ0 ∼ Np(m0,C0). (3)

We assume that the disturbances {νk} and {ωk} are both serially independent and also
independent of each other. The possible time-dependent quantities Fk, Gk, Vk and Wk may
depend on a parameter vector, but this is suppressed in the notation.

We now consider the case where the state process is Gaussian and the sampling distribution
belongs to the exponential family,

p(yk|ηk) = exp {ykηk − bk(ηk) + ck(yk)} . (4)

The density (4) contains the Gaussian, Poisson, gamma and the binomial distributions as
special cases. The natural parameter ηk is related to the linear predictor λk by the equation
ηk = v(λk) or equivalently λk = u(ηk). The linear predictor in a generalized linear model is
of the form λk = Zkβ, where Zk is a row vector of explanatory variables and β is the vector
of regression parameters. The link function, g, relates the mean, E(yk) = µk, and the linear
predictor, λk, as g(µk) = λk. The inverse link function, h, is defined as µk = τ(ηk) = h(λk),
where τ is the mean value mapping. The following relations hold ηk = v(λk) = τ−1(h(λk))
and λk = u(ηk) = g(τ(ηk)), where u is the inverse of v. The link function is said to be
canonical if ηk = λk, i.e. if g = τ−1.
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2.1. Dynamic extension

The static generalized linear model is extended by adding a dynamic term, Xkβk, to the
linear predictor, where βk is varying randomly over time according to a first order Markov
process. Hence,

λk = Zkβ + Xkβk, (5)

where β is the coefficient of the static component and {βk} are the time-varying coefficients
of the dynamic component.

For notational convenience, we will use the notation

λk = F>
k θk, θk =

(
β
βk

)
. (6)

The evolution through time of the state vector, θk, is modelled by the relation

θk = Gkθk−1 + ωk, (7)

for an evolution matrix Gk, determined by the model. The error terms, {ωk}, are assumed
to be independent Gaussian variables with zero mean and variance VAR(ωk), with non-zero
entries corresponding to the entries of the time-varying coefficients, βk, and zero elsewhere.

The model is fully specified by the initializing parameters m0 and C0, the matrices Fk, Gk,
and the variance parameters Vk and VAR(ωk). The variances may be parametrized as e.g.
VAR(ωk) = ψ · diag(1, 0, 0, 1, 1) or VAR(ωk) = diag(ψ1, ψ2, ψ2).

2.2. Inferential procedures

For a Gaussian state space model, we write θk|Dk ∼ Np(mk,Ck), where Dk is all information
available at time tk. The Kalman filter recursively yields mk and Ck with the recursion
starting in θ0 ∼ Np(m0,Co).

Assessment of the state vector, θk, using all available information, Dn, is called Kalman
smoothing and we write θn|Dn ∼ Np(m̃k, C̃k). Starting with m̃n = mn and C̃n = Cn, the
Kalman smoother is a backwards recursion in time, k = n− 1, . . . , 1.

For exponential family sampling distributions, the iterated extended Kalman filter yields an
approximation to the conditional distribution of the state vector given Dn, see e.g. Durbin
and Koopman (2000). By Taylor expansion, the sample distribution (4) is approximated with
a Gaussian density, giving an approximating Gaussian state space model. The conditional
distribution of the state vector given Dn in the exact model and in the Gaussian approximation
have the same mode. The iterated extended Kalman filter is used as filter and smoother
method in sspir.

2.3. Decomposition

The variation in the linear predictor, random or not, may be decomposed into four compo-
nents: a time trend (Tk), harmonic seasonal patterns (Hk), unstructured seasonal patterns
(Sk), and a regression with possibly time-varying covariates (Rk).

Each component may contain static and/or dynamic components, which is specified by zero
and non-zero diagonal elements in VAR(ωk), respectively, as described in the following.
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The block-diagonal evolution matrix takes the form

Gk =


G(1)

k

I
G(3)

k

I

 ,
where G(1)

k is defined in (9), and G(3)
k in (12). The components are only present if the model

includes the corresponding terms.

The linear predictor,

λk = Tkθ
(1)
k + Hkθ

(2)
k + Skθ

(3)
k + Rkθ

(4)
k

= Tk +Hk + Sk +Rk.

will be detailed in the following.

Time trend

The long term trend is usually modelled by a sufficiently smooth function. In static regression
models, this can be done by e.g. a high degree polynomial, a spline, or a generalized additive
model. In the dynamic setting, however, a low degree polynomial with time-varying coefficient
may suffice.

By stacking a polynomial, q(t) = b0 +b1t+ · · ·+bptp, and the first p derivatives, the transition
from tk−1 to tk obeys the relation

q(tk)
q′(tk)

...
q(p)(tk)

 = G(1)
k


q(tk−1)
q′(tk−1)

...
q(p)(tk−1)

 , (8)

where ∆tk = tk − tk−1, and the upper triangular transition matrix is given by

G(1)
k =


1 ∆tk · · · ∆tpk/p!

1 · · · ∆tp−1
k /(p− 1)!

. . .
...

1

 . (9)

Using θ
(1)
k for the left hand side of (8), a polynomial growth model with time-varying coeffi-

cients can be written as θ
(1)
k = G(1)

k θ
(1)
k−1 + ω

(1)
k . The error term has variance VAR(ω(1)

k ) =
∆tkW(1), where W(1) is diagonal in the case with independent random perturbations in each
of the derivatives.

The trend component is the first element in θ
(1)
k , i.e.

Tk = Tkθ
(1)
k = [ 1 0 · · · 0 ] θ

(1)
k .

Alternatively, the time trend may be modelled as a random function, q(t), for which the
increments over time are described by a random walk, resulting in a cubic spline, see Kitagawa
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and Gersch (1984). The transition is the same as in (8) with p = 2, but only one variance
parameter is necessary as,

VAR(ω(1)
k ) = σ2

w

[
∆t3k/3 ∆t2k/2

∆t2k/2 ∆tk

]
. (10)

Harmonic seasonal pattern

Seasonal patterns with a given period, m, can be described by the following dth degree
trigonometric polynomial

Hk = Hkθ
(2)
k

=
d∑

i=1

{
θc,i cos

(
i · 2π
m
tk

)
+ θs,i sin

(
i · 2π
m
tk

)}
(11)

=
[
c1k · · · cdk s1k · · · sdk

]
θ

(2)
k ,

where cik = cos(i ·2πtk/m) and sik = sin(i ·2πtk/m). This component can be used to describe
seasonal effects showing cyclic patterns. Further seasonal components may be added for each
period of interest.

The random fluctuations in θ
(2)
k is modelled by a random walk, θ

(2)
k = θ

(2)
k−1 + ω

(2)
k with

VAR(ω(2)
k ) = ∆tkW(2).

Unstructured seasonal component

For equidistant observations, a commonly used parameterization for the seasonal component
is to let the effects, γk, for each period sum to zero in the static case, or to a white noise error
sequence in the time-varying case, see Kitagawa and Gersch (1984). For an integer period,
m, the sum-to-zero constraint can be expressed as

∑m−1
i=0 γk−i = 0 in the static case, and in

the dynamic case,
∑m−1

i=0 γk−i = ω
(3)
k , with ω(3)

k ∼ N (0, σ2
w). This is expressed in matrix form

by letting θ
(3)
k = [γk, γk−1, . . . , γk−m+2]>, and defining the (m− 1)× (m− 1) matrix

G(3)
k =


−1 −1 · · · −1

1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 . (12)

Then, θ
(3)
k = G(3)

k θ
(3)
k−1 + ω

(3)
k , with VAR(ω(3)

k ) = W(3) = diag(σ2
w, 0, . . . , 0) defines the evolu-

tion of the seasonal component. The corresponding term in the linear predictor is extracted
by

Sk = Skθ
(3)
k = [ 1 0 · · · 0 ]θ(3)

k .

Regression component

Observed time-varying covariates, Rk, enter the model through the usual regression term

Rk = Rkθ
(4)
k ,
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with θ
(4)
k = θ

(4)
k−1 +ω

(4)
k and VAR(ω(4)

k ) = ∆tkW(4). The structure of W(4) is specified by the
modeller and depends on the context.

3. Specification of state space objects

The package sspir can be downloaded and installed from http://CRAN.R-project.org/ and
is then activated in R by library("sspir"). Assuming that the data are available either in
a dataframe or in the current environment, then a state space model is setup using glm-style
formula and family arguments. Terms are considered static unless embraced by the special
function tvar(), described further in Section 3.2.

3.1. State space model objects

In sspir, a state space model is defined as an object from the class ssm. The object defines
the model and contains the slots that are needed for the subsequent statistical analysis.
The definition of a state space model object has the following syntax

ssm(formula, family=gaussian, data, subset, fit=TRUE,
phi, m0, C0, Fmat, Gmat, Vmat, Wmat)

The call is designed to be similar to the glm call. The elements in the call are

formula a specification of the linear predictor (5) of the model. The syntax is defined in
Section 3.2.

family a specification of the observation error distribution and link function to be used in the
model, as in a glm-call. This can be a character string naming a family function, a family
function or the result of a call to a family function. Currently, only Poisson with log-
link, binomial with logit-link, and Gaussian with identity-link have been implemented.
It is possible to expand with further combinations within the exponential family.

data an optional data frame containing the variables in the model. By default the variables
are taken from ’environment(formula)’, typically the environment from which ’ssm’ is
called. The response has to be of class ts.

subset an optional vector specifying a subset of observations to be used in the fitting process.

fit a logical defaulting to TRUE which means that the iterated extended Kalman smoother is
used to fit the model. If FALSE, the model is only defined and no inferential calculations
are made.

phi a vector of hyper parameters that are passed directly to Fmat, Gmat, Vmat, and Wmat. If
phi is not provided, it is default set to a vector of ones with the length determined by
the number of hyper parameters needed on the basis of the formula provided.

m0 a vector with the initial state vector. Defaults to a vector of zeros.

C0 a matrix with the variance matrix of the initial state. Defaults to a diagonal matrix with
diagonal entries set to 106.

http://CRAN.R-project.org/
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Fmat a function giving the regression matrix at a given timepoint. If not supplied, this is
constructed from the formula.

Gmat a function giving the evolution matrix at a given timepoint. If not supplied, this is
constructed from the formula.

Wmat a function giving the evolution variance matrix at a given timepoint. If not supplied,
this is constructed from the formula.

Vmat a function giving the observation variance matrix at a given timepoint. If not supplied,
this is constructed from the formula.

The call creates an object defining the system matrices Ft, Gt, Wt, and Vt in terms of
functions, returning the matrix in question at a given time point. For example, the Wmat
function could be defined as

Wmat <- function(tt,x,phi) {
if (tt==10) return(matrix(phi[2]))
else return(matrix(phi[3]))

}

Here, Wmat has value phi[3] at all time-points except time-point tt==10, where the value is
phi[2]. This provides a mechanism of incorporating interventions and change-points at any
given time. Note, that the call to ssm creates the functions which can be re-used. In the
following example, the Wmat function is first created in the call to ssm, and then manually
changed so that the second diagonal entry is larger at timepoint tt==10. Finally, the model
is fitted using the function kfs.

gasmodel <- ssm(log10(UKgas) ~ -1 + tvar(polytime(time,1)),fit=FALSE)
Wold <- Wmat(gasmodel)
Wmat(gasmodel) <- function(tt,x,phi) {

W <- Wold(tt,x,phi)
if (tt==10) {W[2,2] <- 100*W[2,2]; return(W)}
else return(W)

}
gasmodel.fit <- kfs(gasmodel)

3.2. Model formulas

A model formula is built up as in a glm call in R. The response appears on the left hand side
of a tilde (~) and on the right hand side the explanatory variables, factors and continuous
variables, appear. However, to specify time-varying regression coefficients, we have defined a
special notation, tvar(), in which these are enclosed.

For example, the formula

y ~ z + tvar(x)
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will correspond to covariates, z and x, of which z has a static parameter and x has a dynamic
parameter. An implicit intercept is also included in the model, unless the term -1 appears in
the formula. When tvar enters a formula and -1 is not included, the intercept will always
be time-varying, i.e. a random walk is added to the linear predictor. Thus, this model
corresponds to the state space model with the linear predictor specified as λk = Zkβ +Xkβk,
Zk being the kth row in the n × 1 matrix Z = [z] and Xk the kth row of the n × 2 matrix
X = [1 x]. The R command model.matrix applied to the formula y ~ z + x yields the
n× 3 matrix [1 z x], in which the rows are F>

k .
The polynomial time trend, (9), is specified using the function,

polytime(time,degree=p)

Note that polytime is different than the built-in R-function poly since the latter produces a
design matrix with orthonormal columns.
The harmonic seasonal pattern, (11), is specified using the function,

polytrig(time,period=m,degree=d)

whereas the unstructured seasonal pattern, (12), is specified using the function,

sumseason(time,period=m)

Regression components are specified using the usual Wilkinson-Rogers formula notation in R.
The model matrix does not contain information about which variables are time-varying. This
distinction is implemented by specifying the variance matrix, VAR(ωk), with zeros in entries
corresponding to static parameters and non-zero entries otherwise.

3.3. Inference

When a model has been defined using ssm and the option fit has been set to TRUE, the iterated
extended Kalman smoother has been applied. The output is stored with the ssm object and
can be extracted by the function getFit. This is a list that contains the estimated mean
(as the component m), and variance matrices (as the component C) of the state vector, θk,
as well as the approximate log-likelihood (as the component loglik) based on the Gaussian
approximation to the state space model.
If ssm has been called with the option fit set to FALSE, the function kfs returns the output
object.
The following example defines a state space model, runs the iterated extended Kalman
smoother, and finally extracts the fitted information into the variable vd.fit. This variable
is a list where, vd.fit$m[t,] contains the conditional mean E[θt|Dn] and vd.fit$C[[t]]
contains the corresponding variance matrix, VAR[θt|Dn].

vd <- ssm( y ~ tvar(1) + seatbelt + sumseason(time,12),
family=poisson(link="log"),
data=vandrivers,
phi = c(1,0.0004945505),
C0=diag(13)*1000
)

vd.fit <- getFit(vd)
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4. Examples

In this section, three examples of specification and application of state space models will
be presented. The examples include Gaussian and Poisson observation densities. The time
series are decomposed into components of trend and seasonality and also inclusion of external
covariates is illustrated. The main focus will be on formulation of the state space object, how
a relevant data analysis can be performed, and how to present the output from the analysis,
based on this object.

Example 4.1 (Gas consumption)
A dataset provided with R is the quarterly UK gas consumption from 1960 to 1986, in millions
of therms (Durbin and Koopman 2001, p. 233). As response, we use the (base 10) logarithm

Time

lo
g1

0(
U

K
ga

s)

1960 1965 1970 1975 1980 1985

2.
0

2.
4

2.
8

Figure 1: Log-transformed UK gas consumption, recorded quarterly from 1960 to 1986.

of the UK gas consumption (displayed in Figure 1), which we assume is normal distributed.
We fit a model with a first order polynomial trend with time-varying coefficients and an
unstructured seasonal component, also varying over time.

yk = log10 UKgask = Tk + Sk + εk,

with the linear trend component being

Tk = Tk−1 + βk−1 + ω
(1)
k , βk = βk−1 + ω

(2)
k

and the seasonal component being

Sk = γk = −(γk−1 + γk−2 + γk−3) + ω
(3)
k ,

where ω
(1)
k , ω

(1)
k and ω

(1)
k are independent noise components. The corresponding vector nota-

tion is
yk = [ 1 0 1 0 0 0 ]θk + εk,

by blocking the evolution matrices of (9) and (12) we get

θk =


Tk

βk

γk

γk−1

γk−2

 =


1 1
0 1

−1 −1 −1
1 0 0
0 1 0

θk−1 +


ω

(1)
k

ω
(2)
k

ω
(3)
k

0
0

 .
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The model is specified, fitted, and plotted in sspir by

phistart <- c(3.7e-4,0,1.7e-5,7.1e-4)
gasmodel <- ssm(log10(UKgas) ~ -1 + tvar(polytime(time,1)) +

tvar(sumseason(time,4)), phi=phistart)
fit <- getFit(gasmodel)

plot(fit$m[,1:3])

Here, the estimated variances are taken from an external maximum likelihood algorithm
provided by the function StructTS, Ripley (2002), which is standard in R. The decomposition
in trend, slope and season components is displayed in Figure 2. In 1971, the slope increases
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Figure 2: Time-varying trend, slope, and seasonal components in UK gas consumption.

from approximately 0.005 to approximately 0.014 and returns to this level in 1979. At the end
of the observation period, the slope increases again. Similarly, it is seen, that the amplitude of
the seasonal component is fairly constant from 1960-1971, after which it increases in the period
1971-1979 and then it stabilizes. The analysis can be reproduced in sspir by demo("gas").

Example 4.2 (Vandrivers)
Let yt be the monthly numbers of light goods van drivers killed in road accidents, from
January 1969 to December 1984 (192 observations). On January 31st, 1983, a seat belt law
was introduced. The interest is to quantify the effect of the seat belt legislation law. For
further information about the data set consult Harvey and Durbin (1986).

Here we use a state space model for Poisson data with a 13-dimensional latent process, con-
sisting of an intervention parameter, seatbelt, changing value from zero to one in February
1983, a constant monthly seasonal, and a trend modelled as a random walk.

This corresponds to a model for Poisson counts

yk ∼ Po(µk),
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with the linear predictor given by a trend, an intervension and a seasonal component

λk = logµk = Tk + α · seatbeltk + Sk,

where

Tk = Tk−1 + ωk; ωk ∼ N (0,W ),

and

Sk = −(Sk−1 + · · ·+ Sk−11).

Hence the linear predictor is

λk = [ 1 seatbeltk 1 0 · · · 0 ]θk,

with evolution matrix and noise term given by

θk =


Tk

α
Sk
...

Sk−11

 =



1
1

−1 −1 · · · −1
1 0 · · · 0

. . .
...

1 0


θk−1 +


ωk

0
0
...
0

 .

The model can be defined and plotted in sspir by

data("vandrivers")
vd <- ssm( y ~ tvar(1) + seatbelt + sumseason(time,12),

family=poisson(link="log"), data=vandrivers,
phi=c(1,0.0004945505),
C0=diag(13)*1000)

vd.fit <- getFit(vd)

plot(vandrivers$y)
lines( exp(seatbelt*vd.fit$m[,2] + vd.fit$m[,1]) )

100 * (1 - exp(vd$m[1,2])) # effect of seat belt legislation

The plot displayed in Figure 3 shows the observations together with the estimated trend
and intervention. The superimposed confidence limits are ± 2 standard deviations, based
on the conditional variance of the latent process, C̃t, see Section 2.2. The trend over time is
generally decreasing and the intervention effect corresponds approximately to a 25% reduction
of casualties. The analysis can be reproduced in sspir by demo("vandrivers"), which show
how to add confidence limits to the plot.

Example 4.3 (Mumps)
Monthly registered cases of mumps in New York City, January 1928 through June 1972 has
been studied by Hipel and McLeod (1994). The incidence of mumps are known to show
seasonal behavior. In the study period the incidence also show variation in trend. The
monthly sample variance grow with the monthly average, although substantial overdispersion
is clearly present.
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Figure 3: Estimated trend and intervention (solid line) for the vandrivers data. The dashed
lines are ± 2 standard deviations.
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Figure 4: The variation in the incidence in mumps, NYC, 1927 – 1972. The upper frame shows
the observed number of cases with the de-seasonalized trend superimposed. The middle frame
shows the location of the peak of the seasonal pattern. The lower frame depicts the variation
in the peak-to-trough ratio over the period.
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Fitting a Poisson generalized linear model with a quadratic trend and an monthly seasonal
pattern, yields an overdispersion of 89.7, a significant trend and a significant seasonal vari-
ation. Changing the seasonal pattern to a harmonic pattern is in accordance with the data
but does not substantially change the overdispersion.

We model the mumps incidence with a first order polynomial trend with time-varying coeffi-
cients and a time-varying harmonic seasonal component.

yk ∼ Po(µk),

with a linear trend and a harmonic seasonal, yielding the linear predictor

λk = logµk = Tk +Hk,

where the linear trend component is defined as

Tk = Tk−1 + βk−1 + ω
(1)
k , βk = βk−1 + ω

(2)
k ,

and the harmonic seasonal pattern as

Hk = θck cos
(

2π
12
k

)
+ θsk sin

(
2π
12
k

)
,

θck = θc,k−1 + ω
(c)
k , θsk = θs,k−1 + ω

(s)
k ,

ω
(1)
k , ω

(2)
k , ω

(c)
k and ω

(s)
k being independent noise terms. Letting θk = [ Tk βk θ

(c)
k θ

(s)
k

]>

we get the following matrix notation

λk =
[

1 0 cos
(

2π
12k

)
sin

(
2π
12k

) ]
θk−1,

and

θk =


1 1
0 1

1 0
0 1

θk−1 +


ω

(1)
k

ω
(2)
k

ω
(c)
k

ω
(s)
k

 .
This is formulated in sspir by the call

data("mumps")
index <- 1:length(mumps)
mumps.m <- ssm( mumps ~ -1 + tvar(polytime(index,1)) +

tvar(polytrig(index,12,1)), family=poisson(link=log),
phi=c(0,0,0.0005,0.0001),
C0 = diag(4))

mumps.fit <- getFit(mumps.m)

plot(mumps)
lines( exp(mumps.fit$m[,1]), lwd=2)

The choice of a first order sinusoid gives the possibility to express the seasonal variation via
the peak-to-trough ratio (yearly max/min) and the location of the peak (code not shown, but
available in demo("mumps")). The output in Figure 4 shows a graduately changing seasonal
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pattern with a decreasing peak-to-trough ratio and a peak location slowly changing. The
location of the peak is changing from late April in 1928–1936, where after the location of
the peak stabilizes around May 1st until 1964, when the peak wanders off to late May, see
Figure 4. It is also seen that the peak-to-trough ratio is varying between 6 to 9 until around
1948, when the ratio graduately decreases to about 4 in 1971. Epidemic episodes are seen
irregularly each 3 to 5 years. The analysis can be reproduced in sspir by demo("mumps").

5. Discussion

The main contribution of the sspir package is to give a formula language for specifying dynamic
generalized linear models. That is, an extension of glm formulae by marking terms with tvar
to specify that the corresponding coefficients are time-varying. The package also provides
(extended) Kalman filter and Kalman smoother for models within the Gaussian, Poisson
and binomial families. The output from the Kalman smoother leaves many possibilities for
designing a suitable presentation of features of the latent process.

The Kalman filter is initialized by the values of m0 and C0, see (3). The modeller can set
entries in C0 to accommodate prior knowledge. In cases where the prior information about
θ0 is sparse, a diffuse initialization may be adequate, see Durbin and Koopman (2001). This
feature has not yet been implemented.

The present framework does not allow the modeller to estimate the unknown variance param-
eters automatically. The modeller can, though, combine numerical maximization algorithms
with the output of the iterated extended Kalman smoother. Hence, the formulation in sspir
does not rely on any specific implementation of an inferential procedure.
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