128 research outputs found

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies

    Consensus on the assessment of systemic sclerosis-associated primary heart involvement: World Scleroderma Foundation/Heart Failure Association guidance on screening, diagnosis, and follow-up assessment

    Full text link
    INTRODUCTION: Heart involvement is a common problem in systemic sclerosis. Recently, a definition of systemic sclerosis primary heart involvement had been proposed. Our aim was to establish consensus guidance on the screening, diagnosis and follow-up of systemic sclerosis primary heart involvement patients. METHODS: A systematic literature review was performed to investigate the tests used to evaluate heart involvement in systemic sclerosis. The extracted data were categorized into relevant domains (conventional radiology, electrocardiography, echocardiography, cardiac magnetic resonance imaging, laboratory, and others) and presented to experts and one patient research partner, who discussed the data and added their opinion. This led to the formulation of overarching principles and guidance statements, then reviewed and voted on for agreement. Consensus was attained when the mean agreement was â©ľ7/10 and of â©ľ70% of voters. RESULTS: Among 2650 publications, 168 met eligibility criteria; the data extracted were discussed over three meetings. Seven overarching principles and 10 guidance points were created, revised and voted on. The consensus highlighted the importance of patient counseling, differential diagnosis and multidisciplinary team management, as well as defining screening and diagnostic approaches. The initial core evaluation should integrate history, physical examination, rest electrocardiography, trans-thoracic echocardiography and standard serum cardiac biomarkers. Further investigations should be individually tailored and decided through a multidisciplinary management. The overall mean agreement was 9.1/10, with mean 93% of experts voting above 7/10. CONCLUSION: This consensus-based guidance on screening, diagnosis and follow-up of systemic sclerosis primary heart involvement provides a foundation for standard of care and future feasibility studies that are ongoing to support its application in clinical practice

    The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens

    Get PDF
    Belowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated with the mycorrhizal fungus Rhizophagus irregularis and the rhizobacterial strain Pseudomonas putida KT2440. The cultivar with high mycorrhizal compatibility supported higher levels of rhizobacterial colonization than the low compatibility cultivar. Those levels were augmented by mycorrhizal infection. Conversely, rhizobacterial colonization of the low compatibility cultivar was reduced by mycorrhizal arbuscule formation. Single inoculations with R. irregularis or P. putida had differential growth effects on both cultivars. Furthermore, while both cultivars developed systemic priming of chitosan-induced callose after single inoculations with R. irregularis or P. putida, only the cultivar with high mycorrhizal compatibility showed a synergistic increase in callose responsiveness following co-inoculation with both microbes. Our results show that multilateral interactions between roots, mycorrhizal fungi and PGPR can have synergistic effects on growth and systemic priming of wheat

    Sierra Madre Oriental Plegada

    No full text

    Huasteca Alta Hidalguense

    No full text

    Cuenca Alta del Balsas

    No full text
    • …
    corecore