1,309 research outputs found

    Enhanced visual exploration for real objects compared to pictures during free viewing in the macaque monkey

    Get PDF
    The question of whether animals perceive pictures as representation of real objects remains still unsolved. Object-picture perception is generally studied requiring animals to learn some information about real objects and transfer that knowledge to the pictorial domain, or vice versa. Here, we tackle the issue of object-picture perception from a different perspective, examining visual exploration behavior of two naĂŻve macaque monkeys during free-viewing of objects and pictures of these objects on a computer monitor. Our main finding is that monkeys looked spontaneously longer at object rather than picture stimuli. However, we find striking similarities in temporal dynamics of gaze allocation within the time course of a single stimulus presentation, as well as in habituation rates within and across behavioral sessions. We also highlight differences between stimulus types in terms of spatial gaze patterns and looking strategies. Stimulus features that attract overt attention during spontaneous visual exploration are thus better predicted for object stimuli by a visual saliency model. Moreover, we provide evidence for a consistency in stimulus preference for objects and pictures, suggesting a correspondence of in how macaques perceive objects and their pictorial stimuli. Taken together, our data suggest that macaque monkeys exhibit evidence for correspondence between objects and pictures. This validates spontaneous visual exploration as a method for studying object-picture correspondence without a need for extensive behavioral training. We discuss the potential advantages of using object over picture stimuli in the context of studies on visual cognition

    Basal forebrain activation enhances between-trial reliability of low-frequency local field potentials (LFP) and spiking activity in tree shrew primary visual cortex (V1)

    Get PDF
    Brain state has profound effects on neural processing and stimulus encoding in sensory cortices. While the synchronized state is dominated by low-frequency local field potential (LFP) activity, low-frequency LFP power is suppressed in the desynchronized state, where a concurrent enhancement in gamma power is observed. Recently, it has been shown that cortical desynchronization co-occurs with enhanced between-trial reliability of spiking activity in sensory neurons, but it is currently unclear whether this effect is also evident in LFP signals. Here, we address this question by recording both spike trains and LFP in primary visual cortex during natural movie stimulation, and using isoflurane anesthesia and basal forebrain (BF) electrical activation as proxies for synchronized and desynchronized brain states. We show that indeed, low-frequency LFP modulations (“LFP events”) also occur more reliably following BF activation. Interestingly, while being more reliable, these LFP events are smaller in amplitude compared to those generated in the synchronized brain state. We further demonstrate that differences in reliability of spiking activity between cortical states can be linked to amplitude and probability of LFP events. The correlated temporal dynamics between low-frequency LFP and spiking response reliability in visual cortex suggests that these effects may both be the result of the same neural circuit activation triggered by BF stimulation, which facilitates switching between processing of incoming sensory information in the desynchronized and reverberation of internal signals in the synchronized state

    A MATLAB-based eye tracking control system using non-invasive helmet head restraint in the macaque

    Get PDF
    Background: Tracking eye position is vital for behavioral and neurophysiological investigations in systems and cognitive neuroscience. Infrared camera systems which are now available can be used for eye tracking without the need to surgically implant magnetic search coils. These systems are generally employed using rigid head fixation in monkeys, which maintains the eye in a constant position and facilitates eye tracking.New method: We investigate the use of non-rigid head fixation using a helmet that constrains only general head orientation and allows some freedom of movement. We present a MATLAB software solution to gather and process eye position data, present visual stimuli, interact with various devices, provide experimenter feedback and store data for offline analysis.Comparison with existing method: Our software solution achieves excellent timing performance due to the use of data streaming, instead of the traditionally employed data storage mode for processing analog eye position data.Results: We present behavioral data from two monkeys, demonstrating that adequate performance levels can be achieved on a simple fixation paradigm and show how performance depends on parameters such as fixation window size. Our findings suggest that non-rigid head restraint can be employed for behavioral training and testing on a variety of gaze-dependent visual paradigms, reducing the need for rigid head restraint systems for some applications.Conclusion: While developed for macaque monkey, our system of course can work equally well for applications in human eye tracking where head constraint is undesirable

    Principles of nociceptive coding in the anterior cingulate cortex.

    Get PDF
    The perception of pain is a multidimensional sensory and emotional/affective experience arising from distributed brain activity. However, the involved brain regions are not specific for pain. Thus, how the cortex distinguishes nociception from other aversive and salient sensory stimuli remains elusive. Additionally, the resulting consequences of chronic neuropathic pain on sensory processing have not been characterized. Using in vivo miniscope calcium imaging with cellular resolution in freely moving mice, we elucidated the principles of nociceptive and sensory coding in the anterior cingulate cortex, a region essential for pain processing. We found that population activity, not single-cell responses, allowed discriminating noxious from other sensory stimuli, ruling out the existence of nociception-specific neurons. Additionally, single-cell stimulus selectivity was highly dynamic over time, but stimulus representation at the population level remained stable. Peripheral nerve injury-induced chronic neuropathic pain led to dysfunctional encoding of sensory events by exacerbation of responses to innocuous stimuli and impairment of pattern separation and stimulus classification, which were restored by analgesic treatment. These findings provide a novel interpretation for altered cortical sensory processing in chronic neuropathic pain and give insights into the effects of systemic analgesic treatment in the cortex

    Early suppression of lymphoproliferative response in dogs with natural infection by Leishmania infantum.

    Get PDF
    Dogs are the domestic reservoirs of zoonotic visceral leishmaniasis caused by Leishmania infantum. Early detection of canine infections evolving to clinically patent disease may be important to leishmaniasis control. In this study we firstly investigated the peripheral blood mononuclear cell (PBMC) response to leishmanial antigens and to polyclonal activators concanavalin A, phytohemagglutinin and pokeweed mitogen, of mixed-breed dogs with natural L. infantum infection, either in presymptomatic or in patent disease condition, compared to healthy animals. Leishmania antigens did not induce a clear proliferative response in any of the animals examined. Furthermore, mitogen-induced lymphocyte proliferation was found strongly reduced not only in symptomatic, but also in presymptomatic dogs suggesting that the cell-mediated immunity is suppressed in progressive canine leishmaniasis. To test this finding, naive Beagle dogs were exposed to natural L. infantum infection in a highly endemic area of southern Italy. Two to 10 months after exposure all dogs were found to be infected by Leishmania, and on month 2 of exposure they all showed a significant reduction in PBMC activation by mitogens. Our results indicate that suppression of the lymphoproliferative response is a common occurrence in dogs already at the beginning of an established leishmanial infection. # 1999 Elsevier Science B.V. All rights reserved

    Neural coding of image structure and contrast polarity of Cartesian, hyperbolic and polar gratings in the primary and secondary visual cortex of the tree shrew

    Get PDF
    We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, while corresponding VEP values tended to decrease, suggesting that single neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF- dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feed-forward inputs. Our findings complement previous literature in primates, rodents and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex

    I.S.Mu.L.T. Achilles Tendon Ruptures Guidelines

    Get PDF
    This work provides easily accessible guidelines for the diagnosis, treatment and rehabilitation of Achilles tendon ruptures. These guidelines could be considered as recommendations for good clinical practice developed through a process of systematic review of the literature and expert opinion, to improve the quality of care for the individual patient and rationalize the use of resources. This work is divided into two sessions: 1) questions about hot topics; 2) answers to the questions following Evidence Based Medicine principles. Despite the frequency of the pathology andthe high level of satisfaction achieved in treatment of Achilles tendon ruptures, a global consensus is lacking. In fact, there is not a uniform treatment and rehabilitation protocol used for Achilles tendon ruptures

    Cortical gray matter reduction precedes transition to psychosis in individuals at clinical high-risk for psychosis: A voxel-based meta-analysis

    Get PDF
    Gray matter and cortical thickness reductions have been documented in individuals at clinical high-risk for psychosis and may be more pronounced in those who transition to psychosis. However, these findings rely on small samples and are inconsistent across studies. In this review and meta-analysis we aimed to investigate neuroanatomical correlates of clinical high-risk for psychosis and potential predictors of transition, using a novel metaanalytic method (Seed-based d Mapping with Permutation of Subject Images) and cortical mask, combining data from surface-based and voxel-based morphometry studies. Individuals at clinical high-risk for psychosis who later transitioned to psychosis were compared to those who did not and to controls, and included three statistical maps. Overall, individuals at clinical high-risk for psychosis did not differ from controls, however, within the clinical high-risk for psychosis group, transition to psychosis was associated with less cortical gray matter in the right temporal lobe (Hedges' g = −0.377), anterior cingulate and paracingulate (Hedges' g = −0.391). These findings have the potential to help refine prognostic and etiopathological research in early psychos
    • 

    corecore