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Gray matter and cortical thickness reductions have been documented in individuals at clinical high-risk for psy-
chosis andmay bemore pronounced in those who transition to psychosis. However, these findings rely on small
samples and are inconsistent across studies. In this review and meta-analysis we aimed to investigate neuroan-
atomical correlates of clinical high-risk for psychosis and potential predictors of transition, using a novel meta-
analytic method (Seed-based d Mapping with Permutation of Subject Images) and cortical mask, combining
data from surface-based and voxel-based morphometry studies. Individuals at clinical high-risk for psychosis
who later transitioned to psychosis were compared to those who did not and to controls, and included three sta-
tistical maps. Overall, individuals at clinical high-risk for psychosis did not differ from controls, however, within
the clinical high-risk for psychosis group, transition to psychosis was associated with less cortical gray matter in
the right temporal lobe (Hedges' g=−0.377), anterior cingulate and paracingulate (Hedges' g=−0.391). These
findings have the potential to help refine prognostic and etiopathological research in early psychosis.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Individuals at Clinical High-Risk for Psychosis (CHR-P) – which en-
compasses those with “ultra-high risk” and/or “basic symptoms”
(Fusar-Poli, 2017) – are characterized by the presence of subthreshold
positive psychotic symptoms and functional impairments, which may
precede the transition to full-blown psychosis (Fusar-Poli et al., 2020).
Current CHR-P inclusion criteria include attenuated positive psychotic
symptoms, brief limited intermittent psychotic symptoms and/or ge-
netic vulnerability together with deterioration in global functioning
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ascertained in the context of a clinical assessment (Fusar-Poli et al.,
2015a). Identification of these features is based on validated psycho-
metric interviews which have a very good prognostic accuracy at
group level (Fusar-Poli et al., 2015b), provided they are used in clinical
samples who have undergone some risk enrichment (Fusar-Poli et al.,
2016b). However, this prognostic accuracy is mostly driven by a good
ability to rule out psychosis risk, as opposed to ruling in psychosis risk
(Fusar-Poli et al., 2015b). Accordingly, the most recent meta-analysis
has documented transition risk of 22% at 36 months follow-up (Fusar-
Poli et al., 2020), therefore yielding a modest positive predictive value.
Competing designations based on the DSM-5-Attenuated Psychosis
Syndrome are characterized by comparable prognostic accuracy
(Salazar de Pablo et al., 2019).

For the last two decades, numerous structural magnetic resonance
imaging studies have attempted to identify brain-based biomarkers
which predict transition to psychotic disorders, in order to improve
the positive predictive value of current CHR-P instruments. Reduced
gray matter volume in the temporo-parietal, prefrontal and limbic cor-
tices, –including the anterior cingulate cortex– (Cannon et al., 2015;
Mechelli et al., 2011; Pantelis et al., 2003) have been found in both
cross-sectional and prospective CHR-P samples, with stronger effects
in CHR-P individuals who later transition to psychosis (CHR-P-T) rela-
tive to those who do not (CHR-P-NT). However, structural neuroimag-
ing findings have been conflicting and inconclusive at identifying
reliable biomarkers, to the point that noneuroimaging biomarker is cur-
rently employed in CHR-P in clinical routine (Fusar-Poli and Meyer-
Lindenberg, 2016). This is likely due to small sample sizes of individual
studies, and is possibly also due to age-related effects influencing both
CHR-P symptoms and structural measures, linked to different stages of
brain development (Radua et al., 2012a; Schimmelmann et al., 2015).
Furthermore, a large body of literature has suggested that the use of an-
tipsychotics has an impact on brain structure (Smieskova et al., 2009)
and has hampered interpretation of neuroimaging findings in patients
with early psychosis.

The development of coordinate-based meta-analyses has made it
possible to integrate data from individual imaging studies. Two previous
structural imaging meta-analyses have been conducted in CHR-P sam-
ples (Ding et al., 2019; Fusar-Poli et al., 2011a), pooling studies using
voxel-based morphometry (VBM) measures of gray matter volume.
These studies yielded contradictory results, reporting for instance both
decreased gray matter volume in the right superior temporal gyrus
(Fusar-Poli et al., 2011a) and increased gray matter volume in the left
superior temporal gyrus (Ding et al., 2019) in CHR-P compared to con-
trols. Furthermore, these meta-analyses only reported on gray matter
volume, excluding studies using surface-based metrics (Dale et al.,
1999).

We aim here to integrate all available naturalistic data so far by
performing a mixed voxel and surface-based meta-analysis of CHR-P
samples using Seed-based d Mapping with Permutation of Subject Im-
ages (SDM-PSI), a novel improvement of an established neuroimaging
meta-analytical method (Albajes-Eizagirre et al., 2019c; Radua et al.,
2012b, 2014), which allows to include surface-based metrics and di-
rectly tests for effects (rather than for convergence of findings as in
the previous VBM meta-analyses (Albajes-Eizagirre and Radua, 2018)
using a proper permutation of individual images. We hypothesized
that individuals with CHR-P would present a) regional cortical gray
matter reduction when compared to controls and b) that reduction in
these cortical areas would characterize CHR-P who ended up develop-
ing a psychotic disorder at follow-up.

2. Material and methods

2.1. Literature search

This systematic review was undertaken in accordance with the
MOOSE (Meta-analysis of Observational Studies in Epidemiology)
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reporting guidelines (Stroup et al., 2000) (MOOSE checklist available
in Supplement, eTable 1). A computerized systematic literature search
was carried out in MEDLINE/PubMed, PsycINFO and Scopus databases,
for studies published up to 31 December 2019. The following search
strategy was used: (“clinical high risk” OR “ultra-high risk” OR “at
risk” OR “syndrome”) AND (“psychosis” OR “schizophrenia”) AND
(“magnetic resonance imaging” OR “structural” OR “voxel-based mor-
phometry” OR “cortical thickness” OR “volume”). Duplicates were de-
leted and the title and abstract of each article were scanned for
relevance independently by two qualified researchers (AF, AB). Rele-
vant datawas extracted from the full text of selected articlesmeeting in-
clusion criteria. In addition, reference lists of relevant studies were
searched for possible eligible studies, and authors with expertise in
the topic were contacted for additional eligible data.

2.2. Inclusion and exclusion criteria

Studiesmeeting the following criteria were included: 1) original arti-
clespublished inpeer-review journals; 2)written inEnglish; 3) including
a CHR-P sample defined according to standardized psychometric instru-
ments (Fusar-Poli et al., 2015a), compared to a healthy control group
(HC) and/or CHR-P-T versus CHR-P-NT, in case-control studies with lon-
gitudinal follow-up; 4) employing awhole-brainapproach; 5)measuring
structural data using gray matter volume or cortical thickness metrics.
Studies including individuals considered at risk for psychosis but not de-
fined according to validated criteria, studies following a region of interest
approach, not providing peak coordinates, or not investigating differ-
ences in either CHR-P versus HC or CHR-P-T versus CHR-P-NT contrasts
were excluded. Authors from potentially eligible studies were contacted
to ask for statistical t-maps; peak coordinates were also requested if
these were not reported in the original article.

2.3. Voxel and surface-based morphometry meta-analysis via permutation
of subject images

The meta-analysis was conducted using SDM-PSI (http://www.
sdmproject.com), which is described in detail and validated elsewhere
(Albajes-Eizagirre et al., 2019a,c; Radua et al., 2012b, 2014). Briefly,
SDM-PSI uses the combination of statistical t-maps and peak coordinates
fromeach study to estimatemultiple times themap of effect sizes of each
study based on MetaNSUE algorithms (Albajes-Eizagirre et al., 2019b).
Next, each imputed dataset is meta-analyzed using standard random-
effectsmodels, and Rubin's rules are used to combine themultiple impu-
tations. Rubin's rules are a set of formulas used to combine the estimates
from the different imputation sets (Rubin, 1987). For instance, for effect
size, the rule is to average the effect sizes of the meta-analyses derived
from the different imputation sets; for the variance of the effect size,
the rule also considers the variability between imputations.

In order to studymeasures of both cortical thickness and graymatter
volume simultaneously, a validated cortical mask – instead of the gray
matter mask implemented by default – was used (Li et al., 2019). This
novel mask allows the combination of VBM and surface-based mor-
phometry studies, increasing the number of studies included and thus
the statistical power of the analyses. As already described (Li et al.,
2019), the new cortical mask was created following the steps below:
conversion of the FreeSurfer left and right hemisphere surface masks
into volumes, combination of the two volumes (left and right hemi-
sphere) into a single volume, registration of the volume from FreeSurfer
space toMNI space, and narrow smoothing (σ=0.15) so as to increase
the thickness of the final mask.

First, the meta-analysis was performed between all individuals with
CHR-P versus HC. Then, CHR-P-T individuals were compared to CHR-P-
NT to assess for cortical abnormalities related to transition to psychosis.
Statistical maps provided by authors were preferred over peak coordi-
nates, since their inclusion highly increase the power of the meta-
analysis (Albajes-Eizagirre et al., 2019c). If a study reported both cortical
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thickness and volume, the latter was preferred for the analysis, because
it is the measure which the current meta-analytic method was initially
designed for. Results are reported both using uncorrected P < 0.005
and voxel extent > 10, and using family-wise error rate (FWER) < 0.05.
The use of two statistical thresholds is common in SDMmeta-analyses.
The “liberal” threshold (uncorrected p < 0.005) was proposed to bal-
ance false-positive and false-negative rates based on comparing the re-
sults ofmeta-analyses andmega-analyses of the samedata (Radua et al.,
2012b). The “conservative” threshold (FWER, p<0.05) ensures the con-
trol of the false-positive rate. This balance between false positive and
false negative rates has been included as one of the “ten simple rules
for neuroimaging meta-analysis” (Müller et al., 2018). Hedges' g effect
sizes were further extracted from relevant peaks. To assess heterogene-
ity, I2 statistics were also reported (>50% is considered to indicate seri-
ous heterogeneity), and to assess potential publication bias, funnel plots
and meta-regressions by standard error were reported.
2.4. Effects of antipsychotic medication and age

To assess the effect of antipsychotic medication, the analyses were
repeated including only naïve or “quasi-nave” samples (with less than
10% of individuals receiving antipsychotic treatment). Meta-regression
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was performed to examine the effect of age on significant regions de-
tected in the main analyses.

2.5. Quality assessment

The quality of all included studieswas assessedusing amodified ver-
sion of the Newcastle-Ottawa Scale as reported in previous meta-
analyses (Salazar de Pablo et al., 2019). (For detailed information see
eTable 2 in the Supplement).

3. Results

Thirty-one studies were included in the meta-analysis. The CHR-P
versus HC contrast included 28 studies (CHR-P: 1248 individuals,
mean age = 22.33 years, %females = 43.21; HC: 1122, mean age =
22.87 years, %females = 44.96), with partial overlap in 5 samples. The
CHR-P-T versus CHR-P-NT contrast included 8 studies (mean follow-
up = 23.7 months; CHR-P-T: 153 individuals, mean age =
20.97 years, %females = 43.37; CHR-P-NT: 547 individuals, mean
age = 20.90 years, %females = 44.81) with no overlapping samples.
See flow-chart of study selection for details (Fig. 1) and Table 1,
Table 2 and eTable 1 for detailed information about recruitment and
methodology of these studies.
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Table 1
Characteristics of the studies included in the contrast of individuals at Clinical High-Risk for Psychosis versus healthy controls.

Study Method Scan Groups (no. of participants) Mean age %Female AP%

CHR-P HC CHR-P HC

Tomyshev et al., 2019 SBM (V) 3 T CHR-P (30); HC (30) 20 21 0 0 93
Shan et al., 2019 VBM (V) 3 T CHR-P (74); HC (76) 22 22 42 49 0
Kwak et al., 2019 SBM (CT) 3 T CHR-P (74); HC (34) 21 20 27 37 0
Sakuma et al., 2018 VBM (V) 1.5 T CHR-P (45); HC (33) 21 24 60 67 36
Gisselgård et al., 2018 SBM (CT) 1.5 T CHR-P (41); HC (37) 17 17 51 61 0
Lian et al., 2018 VBM (V) 3 T CHR-P (19); HC (30) 20 21 32 47 NA
Zhao et al., 2018 VBM (V) 3 T CHR-P (26); HC (39) 21 22 31 51 0
Dukart et al., 2017a VBM (V, CT) 3 T CHR-P (59); HC (26) 25 28 27 54 0
Bakker et al., 2016 SBM (CT) 3 T CHR-P (18); HC (24) 23 23 56 42 0
Iwashiro et al., 2016 VBM (V) 3 T CHR-P (23); HC (16) 21 24 43 38 NA
Valli et al., 2016 VBM (V) 1.5 T CHR-P (25); HC (25) 29 25 28 44 0
Klauser et al., 2015a VBM (V); SBM (CT) 3 T CHR-P (69); HC (32) 22 23 32 47 0
Nenadic et al., 2015 VBM (V) 3 T CHR-P (43); HC (49) 24 24 51 47 0
Bernasconi et al., 2015 VBM (V) 3 T CHR-P (49); HC (24) 24 28 22 58 0
Lincoln and Hooker, 2014 VBM (V) 3 T CHR-P (22); HC (21) 22 22 NA NA NA
Roman-Urrestarazu et al., 2014 VBM (V) 1.5 T CHR-P (39); HC (73) 22 22 74 59 NA
Nakamura et al., 2013 VBM (V) 1.5 T CHR-P (14); HC (51) 22 24 29 41 21
Jung et al., 2012 VBM (V) 1.5 T CHR-P (16); HC (23) 22 23 44 43 19
Smieskova et al., 2012 VBM (V) 3 T CHR-P (31); HC (19) 25 27 71 53 3
Whitford et al., 2012 VBM (V) 3 T CHR-P (58); HC (19) 19 21 45 63 0
Fusar-Poli et al., 2011b VBM (V) 1.5 T CHR-P (39); HC (41) 24 23 38 20 46
Fusar-Poli et al., 2011c VBM (V) 1.5 T CHR-P (15); HC (15) 24 25 47 40 0
Mechelli et al., 2011 VBM (V) 1.5/3 T CHR-P (182); HC (167) 23 24 64 38 8
Koutsouleris et al., 2009 VBM (V) 1.5 T CHR-P (46); HC (75) 26 25 37 39 0
Stone et al., 2009 VBM (V) 3 T CHR-P (27); HC (27) 25 25 48 52 19
Ziermans et al., 2009 VBM (V) 1.5 T CHR-P (54); HC (54) 16 16 39 50 22
Meisenzahl et al., 2008 VBM (V) 1.5 T CHR-P (75); HC (40) 25 25 39 38 0
Borgwardt et al., 2007 VBM (V) 1.5 T CHR-P (35); HC (22) 24 23 37 41 9

Abbreviations: %AP, percentage of individuals treated with antipsychotics in the clinical high-risk group; CHR-P, Clinical High-Risk for Psychosis; HC, healthy control; SBM, surface-based
morphometry, VBM, voxel-based morphometry; CT (cortical thickness); V (volume); T, Tesla; NA, not applicable.

a Available statistical maps provided by authors.
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3.1. Differences in cortical gray matter in CHR-P individuals relative to HC

No significant areas of decreased or increased cortical gray matter
were found in individuals with CHR-P compared to HC (P < 0.005).
3.2. Differences in cortical gray matter in CHR-P individuals according to
transition to psychosis

CHR-P-T individuals showed a large cluster of decreased cortical
gray matter in the right temporal lobe and superior and middle tempo-
ral gyrus; and a second cluster in the right anterior cingulate cortex and
paracingulate gyrus (P = 0.0005 and 0.0008; Hedges' g = −0.377 ±
0.232 and −0.391 ± 0.232; FWER > 0.05) (Table 3, Fig. 2, eFigure 1),
compared to CHR-P-NT. No areas of increased cortical gray matter
were found in CHR-P-T relative to CHR-P-NT. The analysis did not
Table 2
Characteristics of the studies included in the contrast of individuals at Clinical High-Risk for Ps

Study Method Scan Groups (no. of parti

Klauser et al., 2015a VBM (V); SBM (CT) 3 T CHR-P-T (7); CHR-P
Cannon et al., 2015 SBM (CT) 3 T CHR-P-T (35); CHR
Ziermans et al., 2012 VBM (V); SBM (CT) 1.5 T CHR-P-T (8); CHR-P
Fusar-Poli et al., 2011a VBM (V) 1.5 T CHR-P-T (5); CHR-P
Mechelli et al., 2011 VBM (V) 1.5/3 T CHR-P-T (48); CHR
Koutsouleris et al., 2009 VBM (V) 1.5 T CHR-P-T (15); CHR
Borgwardt et al., 2007 VBM (V) 1.5 T CHR-P-T (12); CHR
Pantelis et al., 2003 VBM (V) 1.5 T CHR-P-T (23); CHR

Abbreviations: CHR-P-T, Clinical High-Risk for Psychosis with transition to psychosis; CHR-P-N
viduals treatedwith antipsychotics in both Clinical High-Risk for Psychosis (with and without t
(cortical thickness); V (volume); T, Tesla; NA, not applicable.

a Available statistical maps provided by authors.
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show relevant heterogeneity or potential publication bias (Table 3,
eFigures 2–3). These analyses were repeated selecting thickness over
volume in studies reporting bothmeasures, and yielded overlapping re-
sults (see Supplementary analysis).
3.3. Effect of antipsychotics and age

More than 50% of the studies included in the CHR-P versus HC con-
trast were antipsychotic naïve, and a further 10.7% were quasi-naïve.
Seven studies reported rates of over 10% of antipsychotic treatment,
and four failed to report psychopharmacological data (see Table 1 for
more information). Repeating the meta-analyses including only naïve
or quasi-naïve samples yielded unchanged results, revealing no signifi-
cant clusters of gray matter differences.
ychosis according to transition to psychosis.

cipants) Mean age %Female AP%

CHR-P-T CHR-P-NT CHR-P-T CHR-P-NT

-NT (56) NA NA NA NA 0%
-P-NT (239) 19 20 29% 39% NA
-NT (35) 17 15 32% 50% 23%
-NT (17) NA NA NA NA 46%
-P-NT (134) 23 23 64% 38% 8%
-P-NT (18) 22 26 27% 39% 0%
-P-NT (23) 25 23 25% 24% 9%
-P-NT (25) 19 22 43% 42% 7%

T, Clinical High-Risk for Psychosis without transition to psychosis; AP%, percentage of indi-
ransition) groups; SBM, surface-basedmorphometry, VBM, voxel-basedmorphometry; CT



Table 3
Cortical abnormalities in individuals at Clinical High-Risk for Psychosis relative to controls and according to transition to psychosis.

MNI coordinates Hedges' g P value FWER No. of voxels Heterogeneity (I2) Breakdown
(no. of voxels)a

CHR-P < HC (none)
CHR-P > HC (none)
CHR-P-T < CHR-P-NT
Right anterior cingulate/paracingulate gyri and
median cingulate

6, 34, 28 −0.391 0.0005 >0.05 90 4.7% Right BA 32 (87)

Right superior temporal gyrus/temporal pole 56, 0, −4 −0.377 0.0008 >0.05 133 0.7% Right BA 48 (31)
Right BA 38 (30)
Right BA 21 (26)

CHR-P-T > CHR-P-NT (none)

Abbreviations: MNI, Montreal Neurological Institute; FWER, family-wise error rate; CHR-P, Clinical High-Risk for Psychosis; CHR-P-T, Clinical High-Risk for Psychosis with transition to
psychosis; CHR-P-NT, Clinical High-Risk for Psychosis without transition to psychosis; BA, Brodmann area.

a Cluster extent threshold = 10 voxels.
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For the CHR-P-T versus CHR-P-NT contrast, 5 out of 8 studies were
antipsychotic naïve (n = 2) or quasi-naïve (n = 3). Two studies re-
ported a higher rate –in one of them both groups were receiving anti-
psychotics, while in the other only individuals in the non-transition
group were taking antipsychotics –and one further study did not report
data relative to antipsychotic treatment (see Table 2 for more informa-
tion). Repeating the meta-analyses including only naïve or quasi-naïve
samples revealed two comparable clusters located in the right temporal
pole and superior temporal gyrus and in the median/anterior cingulate
and paracingulate gyrus (P < 0.005) (see eTable 2 and eFigure 4 in the
Supplement).

Meta-regression found no effects of age in regions showing signifi-
cant effects in the CHR-P-T versus CHR-P-NT contrast.
3.4. Quality assessment

The Newcastle-Ottawa Scale scores ranged from 4 to 8. For detailed
results see eTables 5–6.
Fig. 2. Meta-analysis of structural abnormalities in CHR-P individuals according to
transition to psychosis. Cluster showing between group differences depicted in blue,
overlapped on ch2bet template from MRIcron (http://www.bic.mni.mcgill.ca/
ServicesAtlases/Colin27). Abbreviations: CHR-P, Clinical High-Risk for Psychosis; HC,
healthy controls; CHR-P-T, Clinical High-Risk for Psychosis with transition to psychosis;
CHR-P-NT, Clinical High-Risk for Psychosis without transition to psychosis.
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4. Discussion

This is, to our knowledge, the first structural neuroimaging meta-
analysis which combines cortical information obtained using both
VBM and surface-based morphometry techniques in CHR-P individuals
to predict the onset of psychosis. Themain findings of the present study
were that CHR-P-T showed decreased cortical graymatter at baseline in
the right temporal pole and superior temporal gyrus, and in the anterior
cingulate and right paracingulate gyrus, compared to CHR-P-NT individ-
uals, while CHR-P did not show any areas of decreased or increased cor-
tical gray matter when compared to HC. Tests assessing the robustness
of the findings confirmed that results were consistent.

In comparison with previous structural imaging meta-analyses in
CHR-P individuals (Ding et al., 2019; Fusar-Poli et al., 2011a), the cur-
rent study reported a substantially larger number of studies (N = 31
in relation to N = 10 (Fusar-Poli et al., 2011a) and N = 14 (Ding et al.,
2019) for the CHR-P versus HC contrast, and N = 8 compared to N =
3 for the CHR-P-T versus CHR-P-NT contrast (Fusar-Poli et al., 2011a),
and included three statisticalmaps, in addition to peak coordinates, pro-
vided by authors of original articles. Methodological improvements
brought by SDM-PSI software (http://www.sdmproject.com) provide
more statistically reliable and robust results, including greater accuracy
and control of false positives, as well as enabling inclusion of negative
results (Albajes-Eizagirre et al., 2019b,c; Radua et al., 2012b). It also
benefits from the use of effect sizes, multiple imputation, random-
effects models, Freedman-Lane-based permutation, and threshold-free
cluster enhancement statistics, among other features (Albajes-
Eizagirre et al., 2019c). The methodological improvements bought by
the meta-analytic procedures, together with the inclusion of a larger
number of samples, may explain the loss of significance of some of the
regions reported in previous meta-analyses, although reduced cortical
gray matter of the superior temporal gyrus, specifically in the right
hemisphere, in individuals with CHR-P-T is consistent with one of the
previous reports (Fusar-Poli et al., 2011a). In addition, we provide
new evidence of gray matter reduction in the right anterior cingulate
cortex as predictor of transition,whichmaynot have been detected pre-
viously due to the small number of studies examining this contrast.
Thus, our findings suggest that gray matter abnormalities reported so
far are not characteristic of the risk group compared to the HC. Individ-
uals with CHR-P constitute a heterogeneous group (Fusar-Poli et al.,
2016a), with a differential accumulation of risk factors for psychosis
(Oliver et al., 2020). In contrast, our findings are more robust in identi-
fying specific cortical graymatter abnormalities at baseline that charac-
terize CHR-P-T individuals.

From a methodological perspective, while there are currently fewer
whole-brain surface-based morphometry than VBM studies in CHR-P
samples, their inclusion in the present meta-analysis has allowed us to
incorporate measures of cortical thickness, which represents a sensitive
measure for detecting anatomic changes (Fornito et al., 2008). Cortical
thickness is considered to reflect acute processes occurring proximally

http://www.sdmproject.com
Image of Fig. 2
http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
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to psychosis onset, as the first symptoms emerge (Morrison and Hof,
1997), whereas gray matter volumemay also reflect changes in surface
area, potentially influenced by processes taking place earlier during
neurodevelopment (Sugranyes et al., 2017). There is evidence of high
regional correlation between graymatter volume and cortical thickness
obtained using VBM and surface-based morphometry, suggesting that
the combination of both methods can provide accurate information
(Winkler et al., 2010). Nevertheless, the results from the present study
are likely to be mainly driven by gray matter volume, since the number
of surface-based morphometry studies was low, especially for the tran-
sition contrast. Thus, it is not possible to extract conclusions on the spe-
cific contribution of baseline changes in cortical thickness to transition
to psychosis from the current meta-analysis.

From an etiopathological perspective, the identified brain regions
have been implicated in the pathogenesis of psychotic disorders at dif-
ferent levels. The anterior cingulate cortex is a limbic structure which
has connections with other limbic areas like the amygdala or
orbitofrontal cortex and plays an important role in cognitive control,
fear conditioning and socio-emotional processing (Morawetz et al.,
2017; Rolls, 2019), which underpin some of the characteristic symp-
toms of CHR-P (Van Donkersgoed et al., 2015). The anterior cingulate
cortex is also implicated in other functionswhich are not specifically re-
lated with psychosis, such us physical pain processing (Bliss et al.,
2016). Structural and functional abnormalities of the anterior cingulate
have also been found in transdiagnostic mental health studies, and are
considered to index general psychopathology and symptom severity
(Etkin et al., 2011; Mcteague et al., 2020). Therefore, graymatter reduc-
tions in the anterior cingulate cortexmay reflect general clinical impair-
ment, which may be more accentuated in CHR-P-T individuals. On the
other hand, the superior temporal gyrus is a heteromodal association
site, which receives input from multiple sensory or multimodal areas,
involved in processing of audiovisual stimuli, including facial recogni-
tion (Mesulam, 1998),and cognitive functions, such as language. Im-
pairments in this area have been associated with positive symptoms,
including auditory hallucinations, and have been identified to play an
important role in the pathophysiology of psychosis (Kim et al., 2021;
Reichenberg et al., 2010; Walton et al., 2017). In fact, cognitive impair-
ments in visual knowledge and visual-spatial problem-solving ability
have been reported in children and adolescents who later developed
adult schizophrenia (Reichenberg et al., 2010). Similarly, emotion rec-
ognition deficits, which have been associated with dysfunction of the
superior temporal gyrus, have been shown to predict transition to psy-
chosis in CHR-P individuals (Corcoran et al., 2015). Emotion recognition
deficits are thought to be associatedwith impairedmotion processing in
both CHR-P individuals and patients with schizophrenia, emphasizing
the importance of sensory-level visual dysfunction in the etiology of
schizophrenia (Martínez et al., 2018). A multimodal meta-analysis per-
formed by our group revealed gray matter volume reductions in the bi-
lateral superior temporal gyrus, as well as in the insula, medial frontal
gyrus and anterior cingulate gyrus in patientswith afirst episode of psy-
chosis, whichwas associated to functional abnormalities in the same re-
gions during cognitive tasks (Radua et al., 2012a). These findings, in line
with cortical structural changes detected in the present meta-analysis,
suggest an association between neuroanatomical and functional abnor-
malities (Fusar-Poli et al., 2011a). It is noteworthy that in the present
study, reductions in the anterior cingulate cortex and superior temporal
gyrus were limited to the right hemisphere. This is in linewith previous
meta-analytical evidence by Fusar-Poli et al. (2011a) and also coincides
with reports from the largest longitudinal CHR-P sample to date, in
which steeper rates of longitudinal cortical thickness reductions were
found predominantly in the right hemisphere in CHR-P-T, and included
the right superior temporal gyrus (Cannon et al., 2015). The authors hy-
pothesized that the right hemispheremay play amore important role in
the initial stages of the disease, and that these deficits progress to the
left hemisphere as psychosis develops. Indeed, predominantly right
hemisphere dysfunction (Jacobson et al., 2010) and volumetric decrease
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(Satterthwaite et al., 2016) have been described in young adolescents
with psychotic spectrum symptoms, considered to represent an earlier
phase of the disease. Furthermore, a recent study has also suggested
that the abnormal cerebral asymmetry exhibited by patients with
schizophrenia increases over time in CHR individuals (Damme et al.,
2020), inwhom the left-lateralized abnormalitiesmay becomemore ac-
centuated as they progress towards the disease. Although limited, this
study holds potential implications towards the improvement of individ-
ualized models for predicting the onset of psychosis (Fusar-Poli et al.,
2018). Over the past years a number of prognostic models have been
developed in psychiatry employing methods such as clinical-learning
or machine-based learning (Fusar-Poli et al., 2019a; Poldrack et al.,
2019). Several risk calculators designed to predict transition to psycho-
sis in CHR-P samples are available, some already externally validated
(Cannon et al., 2016; Carrión et al., 2016; Fusar-Poli et al., 2017,
2019b). While predictors in such models so far have mostly focused
on clinical and demographic features, more recent machine-learning
studies have suggested that adding neuroimaging predictors to clinical
predictors can increase prognostic accuracywhen assessing CHR-P indi-
viduals (Koutsouleris et al., 2018). Current guidelines recommend that
predictors are to be pre-specified, and selected on the basis of a priori
knowledge (Fusar-Poli et al., 2018), in order to avoid potential bias.
Thus, the current meta-analytic findings may help provide a-priori
knowledge of regions that may be incorporated in future prognostic
models that are being developed as part of ongoing international CHR-
P consortia, such as Psyscan (http://psyscan.eu), Accelerated Medicines
Partnership in Schizophrenia (https://fnih.org/our-programs/AMP/
schizophrenia) or Pronia (http://www.pronia.eu).

This study also controlled the core findings for some important con-
founders. Results from the CHR-P-T versus CHR-P-NT contrast remained
unchanged when analyzing only antipsychotic naïve and quasi-naïve
samples, suggesting that the findings were not driven by the effects of
antipsychotic treatment. Antipsychotic treatments in CHR-P individuals
are not recommended asfirst line treatment, and only used in lowdoses
for short periods of time (Schmidt et al., 2015), so the effects of medica-
tion on brain structure are unlikely to be comparable to the effects ob-
served in established psychosis. Meta-regression also revealed no age-
related differences, which could be due to a lack of power to detect
small effects, and possibly also to the fact that our design was not sensi-
tive to within sample age differences. A recent meta-analysis found no
age impact on the risk of developing psychosis in CHR-P samples
(Fusar-Poli et al., 2016a). However, it is noteworthy that while adoles-
cence is thought to be an especially important period in terms of the
neurobiological pathways leading to psychosis (Keshavan et al., 2014),
few studies so far have focused on adolescents with CHR-P, or
have considered structural imaging findings in the context of
neurodevelopmental change (deWit et al., 2016; Ziermans et al., 2012).

This study has several methodological limitations. Effects of other
moderators that may potentially influence cortical structure were not
explored due to insufficient data provided from the original studies,
such as type of CHR-P subgroup, treatmentwith antidepressantmedica-
tion, psychological interventions, or comorbid alcohol or drug use. Al-
though this is the largest meta-analysis of structural imaging in CHR-P
individuals performed so far, the sample size, especially when assessing
transition to psychosis, could have limited the power to detect differ-
ences surviving FWER correction. Nevertheless, the empirical validation
of this threshold has showed that itmay be over-conservative, as the ac-
tual false positive rate using FWER p < 0.05 was approximately 1%
(Albajes-Eizagirre et al., 2019c). In fact, the use of more than one statis-
tical threshold is considered to be a critical factor for grading the
strength of the evidence from previous studies (Fusar-Poli and Radua,
2018; Radua et al., 2018). While providing knowledge to researchers
developing predictive models, translatability of our results to the indi-
vidual level will require caution, given the modest effect sizes of single
studies. Finally, application of a cortical mask in the analysis excluded
potential volumetric differences in subcortical and cerebellar structures

http://psyscan.eu
https://fnih.org/our-programs/AMP/schizophrenia
https://fnih.org/our-programs/AMP/schizophrenia
http://www.pronia.eu
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that could play a role in transition to psychosis, althoughwe considered
this to be beyond the scope of the present study.

5. Conclusions

Cortical gray matter reduction in the anterior cingulate,
paracingulate and right superior temporal cortex are observed in CHR-
P individuals who later developed a psychotic disorder. This evidence
can refine prognostic and etiopathological research in early psychosis.
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