3,516 research outputs found

    The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer's disease

    Get PDF
    Acknowledgements: Authors want to express their gratitude to Dr. P. Davies (Albert Einstein College of Medicine, Bronx, NY, USA) and Lester I. Binder (NorthWestern, Chicago, IL, USA) for the generous gift of mAbs (TG-3, Alz-50, and MC1), and (TauC-3), respectively, and to M. en C. Ivan J. Galván-Mendoza for his support in confocal microscopy, and Ms. Maricarmen De Lorenz for her secretarial assistance. We also want to express our gratitude to the Mexican Families who donate the brain of their loved ones affected with Alzheimer's disease, and made possible our research. This work was financially supported by CONACyT grant, No. 142293 (For R.M).Peer reviewedPublisher PD

    InSAR-Based Mapping to Support Decision-Making after an Earthquake

    Get PDF
    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with valuable data to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after large earthquakes. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip over the fault rupture. We also build an alternative source model using the Global Centroid Moment Tensor (CMT) solution. Then we use these models to evaluate changes of static stress on the surrounding faults and volcanoes and produce maps of potentially activated faults and volcanoes. We found, in general, good agreement between our maps and the seismic and volcanic events that occurred after the Pedernales earthquake. We discuss the potential and limitations of the methodology.This work is supported by the European Commission, Directorate-General Humanitarian Aid and Civil Protection (ECHO) under the SAFETY (Sentinel for Geohazards regional monitoring and forecasting) project (ECHO/SUB/2015/718679/Prev02) and by the Spanish Ministry of Economy and Competitiveness under INTERGEOSIMA (CGL2013-47412) and ACTIVESTEP (CGL2017-83931-C3), QUAKESTEP (1-P) + 3GEO(2-P) + GEOACTIVA (3-P) projects

    InSAR-Based Mapping to Support Decision-Making after an Earthquake

    Get PDF
    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with valuable data to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after large earthquakes. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip over the fault rupture. We also build an alternative source model using the Global Centroid Moment Tensor (CMT) solution. Then we use these models to evaluate changes of static stress on the surrounding faults and volcanoes and produce maps of potentially activated faults and volcanoes. We found, in general, good agreement between our maps and the seismic and volcanic events that occurred after the Pedernales earthquake. We discuss the potential and limitations of the methodology

    Diseño, modelado y construcción de la dirección de un vehículo tipo SAE mediante análisis vectoriales y geométricos

    Get PDF
    El objetivo de este artículo es diseñar la geometría del sistema de dirección de un vehículo SAE (Society of Automotive Engineers), para poder determinar el desplazamiento que debe recorrer la cremallera y que las ruedas del vehículo giren en un ángulo previamente establecido. Se utilizan vectores de posición para representar los elementos móviles del sistema de dirección en sus dos diferentes condiciones: sin ángulo de giro y con el ángulo máximo de giro. Los elementos usados para el diseño fueron los brazos de dirección, los tirantes y la cremallera, siendo esta última representada como un vector de desplazamiento en un solo eje. Los elementos restantes fueron representados con vectores de magnitud fija, después se procedió a determinar ecuaciones utilizando un lazo cerrado del mecanismo con base en las condiciones que se establecen (máximo ángulo de giro y geometría de la dirección), finalmente, se calcula el recorrido necesario en la cremallera, con esto se obtiene el diámetro de paso final del piñó

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management
    corecore