35 research outputs found

    Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing

    Get PDF
    We present a long-term assessment of precipitation trends in Southwestern Europe (1850-2018) using data from multiple sources, including observations, gridded datasets and global climate model experiments. Contrary to previous investigations based on shorter records, we demonstrate, using new long-term, quality controlled precipitation series, the lack of statistically significant long-term decreasing trends in precipitation for the region. Rather, significant trends were mostly found for shorter periods, highlighting the prevalence of interdecadal and interannual variability at these time-scales. Global climate model outputs from three CMIP experiments are evaluated for periods concurrent with observations. Both the CMIP3 and CMIP5 ensembles show precipitation decline, with only CMIP6 showing agreement with long term trends in observations. However, for both CMIP3 and CMIP5 large interannual and internal variability among ensemble members makes it difficult to identify a trend that is statistically different from observations. Across both observations and models, our results make it difficult to associate any declining trends in precipitation in Southwestern Europe to anthropogenic forcing at this stage

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    Baccharis Salicifolia development in the presence of high concentrations of uranium in the arid environment of San Marcos, Chihuahua

    No full text
    English: In humid zones and marine environments the bioindicator contaminants by trace elements are well established. However, in arid zones it is more difficult to find these tools because there is less biodiversity. The objective of this paper was to analyze the behavior of the Baccharis salicifolia plant in areas with high uranium concentration in arid zones, to determine the characteristics of tolerance and possible use as a biomonitor for the presence of such contaminants. For this project a uraniferous zone was selected in San Marcos, located northwest of the City of Chihuahua. A total of 8 sampling points of the plant and soil were located here. Each sample was divided into the root and the stem and leaves to determine the specific activity of the uranium in both parts of the plant and its sediments. The determination of the specific activities of the total uranium in the samples was obtained by liquid scintillation with alpha-beta separation. The results indicate a tendency for the plant to accumulate the uranium in its different parts, and to translocate it to its stem and leaves. The plant is resistant to high concentrations of uranium, not showing any specific changes in relation to non - contaminated areas that might indicate the presence of the contaminant. Therefore, its use as a biomonitor species is limited. Español: En zonas húmedas y ambientes marinos están bien establecidos los bioindicadores de contaminación por elementos trazas. Sin embargo, en zonas áridas es más difícil encontrar estas herramientas, debido a que la biodiversidad es menor. El objetivo del presente trabajo fue analizar el comportamiento de la planta Baccharis salicifolia en sitios con altas concentraciones de uranio en zonas áridas para determinar sus características de tolerancia y posible uso como biomonitor de la presencia dicho contaminante. Para dicho estudio se seleccionó la zona uranífera de San Marcos, ubicada al noroeste de la ciudad de Chihuahua. Aquí se ubicaron 8 puntos de muestreo de la planta y suelo adyacente a la misma. Cada muestra fue seccionada en raíz y parte áerea, determinándose la actividad específica de uranio en ambas secciones de la planta y sedimentos. La determinación de las actividades específicas de uranio total en las muestras se realizó con un equipo de detección de centelleo líquido con separación alfa-beta. Los resultados indican una tendencia de la planta a acumular el uranio en sus diferentes partes, y a traslocarlo a la parte áerea de la planta. La planta es resistente a altas concentraciones de uranio, pero no muestra ningún efecto o cambio con respecto a sitios no contaminados que pueda indicar la presencia del contaminante, por lo que su uso como especie biomonitora es limitado
    corecore