286 research outputs found

    Observations of cosmic-ray modulations in the fall, 1984

    Get PDF
    Modulation of cosmic-ray energy spectrum was studied by using the Turku double neutron monitor. The multiplicity region of detected neutrons produced by cosmic ray hadrons in the monitor was divided into seven categories corresponding to mean energies 0.1, 0.3, 1.0, 3.2, 8.6, 21, and 94 GeV of hadrons at sea level. Based on 24-hour frequencies, a statistical analysis showed that modulation of the intensity in all categories occurred during several periods in the fall 1984. The magnitude of the variation was a few per cent

    A facility for investigation of multiple hadrons at cosmic-ray energies

    Get PDF
    An experimental arrangement for studying multiple hadrons produced in high-energy hadron-nucleus interactions is under construction at the university of Turku. The method of investigation is based on the detection of hadrons arriving simultaneously at sea level over an area of a few square meters. The apparatus consists of a hadron spectrometer with position-sensitive detectors in connection with a small air shower array. The position resolution using streamer tube detectors will be about 10 mm. Energy spectra of hadrons or groups of simultaneous hadrons produced at primary energies below 10 to the 16th power eV can be measured in the energy range 1 to 2000 GeV

    Spectral analysis of the Forbush decrease of 13 July 1982

    Get PDF
    The maximum entropy method has been applied in the spectral analysis of high-energy cosmic-ray intensity during the large Forbush event of July 13, 1982. An oscillation with period of about 2 hours and amplitude of 1 to 3% was found to be present during the decrease phase. This oscillation can be related to a similar periodicity in the magnetospheric field. However, the variation was not observed at all neutron monitor stations. In the beginning of the recovery phase, the intensity oscillated with a period of about 10 hours and amplitude of 3%

    Investigation of cosmic rays in very short time scales

    Get PDF
    A fast databuffer system, where cosmic ray events in the Turku hadron spectrometer, including particle arrival times are recorded with time resolution of 100 ns was constructed. The databuffer can be read continuously by a microprocessor, which preanalyzes the data and transfers it to the main computer. The time span, that can be analyzed in every detail, is a few seconds. The high time resolution enables a study of time correlated groups of high energy particles. In addition the operational characteristics of the spectrometer can be monitored in detail

    Mental disorders and long-term labour market outcomes : nationwide cohort study of 2 055 720 individuals

    Get PDF
    Objective To examine the associations between an onset of serious mental disorders before the age of 25 with subsequent employment, income and education outcomes. Methods Nationwide cohort study including individuals (n = 2 055 720) living in Finland between 1988–2015, who were alive at the end of the year they turned 25. Mental disorder diagnosis between ages 15 and 25 was used as the exposure. The level of education, employment status, annual wage or self‐employment earnings, and annual total income between ages 25 and 52 (measurement years 1988–2015) were used as the outcomes. Results All serious mental disorders were associated with increased risk of not being employed and not having any secondary or higher education between ages 25 and 52. The earnings for individuals with serious mental disorders were considerably low, and the annual median total income remained rather stable between ages 25 and 52 for most of the mental disorder groups. Conclusions Serious mental disorders are associated with low employment rates and poor educational outcomes, leading to a substantial loss of total earnings over the life course.Peer reviewe

    Probing the Effect of Cadence on the Estimates of Photospheric Energy and Helicity Injections in Eruptive Active Region NOAA AR 11158

    Get PDF
    We study how the input-data cadence affects the photospheric energy and helicity injection estimates in eruptive NOAA Active Region 11158. We sample the novel 2.25-minute vector magnetogram and Dopplergram data from the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) spacecraft to create input datasets of variable cadences ranging from 2.25 minutes to 24 hours. We employ state-of-the-art data processing, velocity, and electric-field inversion methods for deriving estimates of the energy and helicity injections from these datasets. We find that the electric-field inversion methods that reproduce the observed magnetic-field evolution through the use of Faraday's law are more stable against variable cadence: the PDFI (PTD-Doppler-FLCT-Ideal, where PTD refers to Poloidal-Toroidal Decomposition, and FLCT to Fourier Local Correlation Tracking) electric-field inversion method produces consistent injection estimates for cadences from 2.25 minutes up to two hours, implying that the photospheric processes acting on time scales below two hours contribute little to the injections, or that they are below the sensitivity of the input data and the PDFI method. On other hand, the electric-field estimate derived from the output of DAVE4VM (Differential Affine Velocity Estimator for Vector Magnetograms), which does not fulfill Faraday's law exactly, produces significant variations in the energy and helicity injection estimates in the 2.25 minutes - two hours cadence range. We also present a third, novel DAVE4VM-based electric-field estimate, which corrects the poor inductivity of the raw DAVE4VM estimate. This method is less sensitive to the changes of cadence, but it still faces significant issues for the lowest of considered cadences (two hours). We find several potential problems in both PDFI- and DAVE4VM-based injection estimates and conclude that the quality of both should be surveyed further in controlled environments.Peer reviewe

    Prevention is better than cure, but...: Preventive medication as a risk to ordinariness?

    Get PDF
    Preventive health remains at the forefront of public health concerns; recent initiatives, such as the NHS health check, may lead to recommendations for medication in response to the identification of 'at risk' individuals. Little is known about lay views of preventive medication. This paper uses the case of aspirin as a prophylactic against heart disease to explore views among people invited to screening for a trial investigating the efficacy of such an approach. Qualitative interviews (N=46) and focus groups (N=5, participants 31) revealed dilemmas about preventive medication in the form of clashes between norms: first, in general terms, assumptions about the benefit of prevention were complicated by dislike of medication; second, the individual duty to engage in prevention was complicated by the need not to be over involved with one's own health; third, the potential appeal of this alternative approach to health promotion was complicated by unease about the implications of encouraging irresponsible behaviour among others. Though respondents made different decisions about using the drug, they reported very similar ways of trying to resolve these conflicts, drawing upon concepts of necessity and legitimisation and the special ordinariness of the particular dru

    Data-driven, time-dependent modeling of pre-eruptive coronal magnetic field configuration at the periphery of NOAA AR 11726

    Get PDF
    Context. Data-driven, time-dependent magnetofrictional modeling has proved to be an efficient tool for studying the pre-eruptive build-up of energy for solar eruptions, and sometimes even the ejection of coronal flux ropes during eruptions. However, previous modeling works have illustrated the sensitivity of the results on the data-driven boundary condition, as well as the difficulty in modeling the ejections with proper time scales. Aims. We aim to study the pre- and post-eruptive evolution of a weak coronal mass ejection producing eruption at the periphery of isolated NOAA active region (AR) 11726 using a data-driven, time-dependent magnetofrictional simulation, and aim to illustrate the strengths and weaknesses of our simulation approach. Methods. We used state-of-the-art data processing and electric field inversion methods to provide the data-driven boundary condition for the simulation. We analyzed the field-line evolution, magnetic connectivity, twist, as well as the energy and helicity budgets in the simulation to study the pre- and post-eruptive magnetic field evolution of the observed eruption from AR11726. Results. We find the simulation to produce a pre-eruptive flux rope system consistent with several features in the extreme ultraviolet and X-ray observations of the eruption, but the simulation largely fails to reproduce the ejection of the flux rope. We find the flux rope formation to be likely driven by the photospheric vorticity at one of the footpoints, although reconnection at a coronal null-point may also feed poloidal flux to the flux rope. The accurate determination of the non-inductive (curl-free) component of the photospheric electric field boundary condition is found to be essential for producing the flux rope in the simulation. Conclusions. Our results illustrate the applicability of the data-driven, time-dependent magnetofrictional simulations in modeling the pre-eruptive evolution and formation process of a flux rope system, but they indicate that the modeling output becomes problematic for the post-eruptive times. For the studied event, the flux rope also constituted only a small part of the related active region.Peer reviewe

    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions : Variation and Driver Dependence

    Get PDF
    We present a statistical study of interplanetary conditions and geospace response to 89 coronal mass ejection-driven sheaths observed during Solar Cycles 23 and 24. We investigate in particular the dependencies on the driver properties and variations across the sheath. We find that the ejecta speed principally controls the sheath geoeffectiveness and shows the highest correlations with sheath parameters, in particular in the region closest to the shock. Sheaths of fast ejecta have on average high solar wind speeds, magnetic (B) field magnitudes, and fluctuations, and they generate efficiently strong out-of-ecliptic fields. Slow-ejecta sheaths are considerably slower and have weaker fields and field fluctuations, and therefore they cause primarily moderate geospace activity. Sheaths of weak and strong B field ejecta have distinct properties, but differences in their geoeffectiveness are less drastic. Sheaths of fast and strong ejecta push the subsolar magnetopause significantly earthward, often even beyond geostationary orbit. Slow-ejecta sheaths also compress the magnetopause significantly due to their large densities that are likely a result of their relatively long propagation times and source near the streamer belt. We find the regions near the shock and ejecta leading edge to be the most geoeffective parts of the sheath. These regions are also associated with the largest B field magnitudes, out-of-ecliptic fields, and field fluctuations as well as largest speeds and densities. The variations, however, depend on driver properties. Forecasting sheath properties is challenging due to their variable nature, but the dependence on ejecta properties determined in this work could help to estimate sheath geoeffectiveness through remote-sensing coronal mass ejection observations.Peer reviewe

    Vitamin D levels in women with polycystic ovary syndrome: a population-based study

    Get PDF
    Background: Conflicting evidence supports a role for vitamin D in women with reproductive disorders such as polycystic ovary syndrome (PCOS) but studies on large, unselected populations have been lacking. Methods: We conducted a general population-based study from the prospective Northern Finland Birth Cohort 1966 (NFBC1966). Serum 25-hydroksyvitamin D (25(OH)D) levels were evaluated in women with self-reported PCOS (n = 280) versus non-symptomatic controls (n = 1573) at the age of 31 with wide range of endocrine and metabolic confounders. Results: The levels of 25(OH)D were similar among women with and without self-reported PCOS (50.35 vs. 48.30 nmol/L, p = 0.051). Women with self-reported PCOS presented with a higher body mass index (BMI), increased insulin resistance, and low-grade inflammation and testosterone levels compared to controls. The adjusted linear regression model showed a positive association between total 25(OH)D levels in self-reported PCOS (β = 2.46, 95% confidence interval (CI) 0.84 to 4.08, p = 0.003). The result remained after adjustment for BMI, testosterone, homeostatic model assessment of insulin resistance (HOMA-IR), and high-sensitivity C-reactive protein (hs-CRP) levels. Conclusion: In this population-based setting, PCOS was associated with higher vitamin D levels when adjusting for confounding factors, without distinct beneficial effects on metabolic derangements
    • …
    corecore