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Abstract We study how the input-data cadence affects the photospheric energy and he-
licity injection estimates in eruptive NOAA Active Region 11158. We sample the novel
2.25-minute vector magnetogram and Dopplergram data from the Helioseismic and Mag-
netic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) spacecraft
to create input datasets of variable cadences ranging from 2.25 minutes to 24 hours. We
employ state-of-the-art data processing, velocity, and electric-field inversion methods for
deriving estimates of the energy and helicity injections from these datasets. We find that
the electric-field inversion methods that reproduce the observed magnetic-field evolution
through the use of Faraday’s law are more stable against variable cadence: the PDFI (PTD-
Doppler-FLCT-Ideal, where PTD refers to Poloidal–Toroidal Decomposition, and FLCT
to Fourier Local Correlation Tracking) electric-field inversion method produces consistent
injection estimates for cadences from 2.25 minutes up to two hours, implying that the photo-
spheric processes acting on time scales below two hours contribute little to the injections, or
that they are below the sensitivity of the input data and the PDFI method. On other hand, the
electric-field estimate derived from the output of DAVE4VM (Differential Affine Velocity
Estimator for Vector Magnetograms), which does not fulfill Faraday’s law exactly, produces
significant variations in the energy and helicity injection estimates in the 2.25 minutes –
two hours cadence range. We also present a third, novel DAVE4VM-based electric-field es-
timate, which corrects the poor inductivity of the raw DAVE4VM estimate. This method is
less sensitive to the changes of cadence, but it still faces significant issues for the lowest
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of considered cadences (≥ two hours). We find several potential problems in both PDFI-
and DAVE4VM-based injection estimates and conclude that the quality of both should be
surveyed further in controlled environments.

Keywords Corona, active · Corona, models · Helicity, magnetic · Helicity, observations ·
Magnetic fields, photosphere · Magnetic fields, corona

1. Introduction

Estimates for energy and helicity injections from the photosphere to the upper solar atmo-
sphere in active regions are important for studying the dynamics of flux emergence (Cheung
and Isobe, 2014; Liu et al., 2014), flux cancellation (Welsch, 2006; Yardley et al., 2018),
and the evolution of active regions (van Driel-Gesztelyi and Green, 2015; Cheung et al.,
2016). These estimates are also found to be particularly important for determining when
and how solar eruptions, such as flares and coronal mass ejections (CMEs), occur in ac-
tive regions (Cheung and DeRosa, 2012; Tziotziou, Georgoulis, and Liu, 2013; Kazachenko
et al., 2015; Pariat et al., 2017; Pomoell, Lumme, and Kilpua, 2019). Despite the fact that
the coronal energy and helicity budgets may be estimated via coronal modeling (although
with significant uncertainties, e.g. DeRosa et al., 2015), there are also less computationally
intensive methods for estimating these quantities: so-called evolutionary estimates for the
energy and helicity injections are acquired by integrating the photospheric Poynting and rel-
ative helicity fluxes in space and time (Kazachenko et al., 2015). These fluxes, in turn, are
estimated using the photospheric electric and plasma-velocity fields, which can be inverted
from the remote-sensing observations of the photospheric magnetic field and line-of-sight
(LOS) plasma velocity. Due to the often-used simplifying assumption of the ideal Ohm’s
law,

E = −V × B, (1)

in the photosphere, the electric and plasma-velocity fields are interchangeable in this context.
The accuracy of these estimates has progressed significantly over the past decade or

so due to improved remote-sensing observations as well as developments in the inversion
methods. Photospheric vector magnetic-field estimates (vector magnetograms) and LOS
plasma-velocity estimates (Dopplergrams), based on spectropolarimetric observations of the
Zeeman and Doppler effects, are currently provided by several magnetographs (see Lagg
et al., 2017, for a review), including the Helioseismic and Magnetic Imager (HMI: Scher-
rer et al., 2012; Schou et al., 2012) onboard Solar Dynamics Observatory (SDO: Pesnell,
Thompson, and Chamberlin, 2012). In turn, a wide collection of inversion methods have
been developed for determining the photospheric plasma-velocity and/or electric-field com-
ponents (see Welsch et al., 2007; Schuck, 2008; Ravindra, Longcope, and Abbett, 2008;
Kazachenko, Fisher, and Welsch, 2014; Tremblay and Vincent, 2014; Lumme, Pomoell,
and Kilpua, 2017, for further details), and these methods have been tested using both real
and synthetic input data.

The state-of-the-art inversion methods that are currently publicly available include
the PDFI (PTD-Doppler-FLCT-Ideal, where PTD refers to Poloidal–Toroidal Decompo-
sition, and FLCT to Fourier Local Correlation Tracking) electric-field inversion method
(Kazachenko, Fisher, and Welsch, 2014; Fisher et al., 2019) and the DAVE4VM (Dif-
ferential Affine Velocity Estimator for Vector Magnetograms) velocity-inversion method
(Schuck, 2008). These methods have shown their accuracy in estimating the electric/velocity
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fields and the related energy and helicity fluxes in a single test case, which we refer to as
the “ANMHD test”. In the ANMHD test, synthetic magnetic-field and LOS plasma-velocity
estimates from an anelastic magnetohydrodynamic (ANMHD) simulation (Abbett et al.,
2004) of an emerging flux rope are used as input to the inversion, and the inverted veloc-
ity/electric fields are compared with the known fields in the simulation (Welsch et al., 2007;
Schuck, 2008; Kazachenko, Fisher, and Welsch, 2014). The fact that only a single simu-
lation test has been used potentially limits the generality of the results: for example, the
vertical emergence of flux is overemphasized in the ANMHD simulation, which causes the
role of shearing motions in the in the energy and helicity injection to be understated (Welsch
et al., 2007; Kazachenko, Fisher, and Welsch, 2014). Furthermore, the synthetic data from
the simulation is also smooth both in time and space, and it does not necessarily represent
well actual vector magnetogram and Dopplergram input, which often exhibit small-scale
structures, noise, and other artifacts.

Despite the limitations in the ANMHD-based validation, both the PDFI and DAVE4VM
inversion methods have been used successfully with observational input to estimate photo-
spheric energy and helicity fluxes (e.g. Liu and Schuck, 2012; Kazachenko et al., 2015; Liu
et al., 2016b; Lumme, Pomoell, and Kilpua, 2017; Bi et al., 2018), to study the properties
of the photospheric plasma-velocity field (e.g. Liu et al., 2016a; Wang et al., 2017), and to
constrain the data-driven boundary conditions for coronal simulations (Fisher et al., 2015;
Pomoell, Lumme, and Kilpua, 2019). However, the use of the methods with actual obser-
vations has been mostly limited to a single type of vector magnetogram and Dopplergram
input from the SDO/HMI instrument, thus being fixed to a certain cadence (12 minutes), res-
olution (0.5′′ per pixel), and noise characteristics (σB ≈ 100 Mx cm−2) of those data. Thus,
it is unclear how the PDFI and DAVE4VM methods respond to, for example, different ca-
dence, resolution, and noise characteristics of the input data. It is also not known whether
the possible undersampling of the photospheric evolution (i.e. insufficient temporal cadence
for capturing the photospheric motions in a given spatial resolution) in the SDO/HMI data
results in a loss of physical processes that have a significant contribution to the injection of
energy and helicity. Moreover, Leake, Linton, and Schuck (2017) found that undersampling
may result in spurious energy fluxes into the corona.

Considering the crucial importance of energy and helicity injection estimates, as well as
the variety of datasets and products available now and in the future, an assessment of how
the inversion methods respond to different input data is needed. In this article we perform a
comprehensive study of the response of energy and helicity injection estimates to input data
whose temporal resolution is varied. We sample the novel 135-second high-cadence vector
magnetogram and Dopplergram data input from the SDO/HMI instrument (Sun et al., 2017)
as well as the nominal 12-minute data (Hoeksema et al., 2014) to create an ensemble of input
datasets with variable cadence ranging from 135 seconds all the way up to 24 hours, thus
covering cadences of data products from other instruments (see, e.g., Lagg et al., 2017, for
review). We invert the photospheric velocity and electric fields from this data using the PDFI
and DAVE4VM methods. We develop new self-consistent ways to optimize the inversion
methods for each cadence, and discuss the role of spatial resolution and undersampling at
the lowest cadences.

Our study focuses on the eruptive active region NOAA AR 11158, thus making our
results relevant for studies of active regions and solar eruptions. This active region was
chosen because it was located close to the disk center all of the way from its emergence
to its strongest activity (X2.2 flare and a halo CME), which ensures good data quality and
spatial resolution for studying the energy and helicity injection over this period. The region
has also been extensively studied offering us a baseline of results for reference and context
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(e.g. Schrijver et al., 2011; Cheung and DeRosa, 2012; Liu and Schuck, 2012; Sun et al.,
2012; Tziotziou, Georgoulis, and Liu, 2013; Kazachenko et al., 2015; Fisher et al., 2015;
Lumme, Pomoell, and Kilpua, 2017; Inoue et al., 2018).

This article is organized as follows: In Section 2 we present the data products, inversion
methods, and the approaches that we use for optimizing the methods for use with input
data of variable cadence. Section 3 details our central findings on the effect of cadence on
the energy and helicity injection estimates. Section 4 discusses the observed limitations and
issues in our results as well as the implications of our findings on the applicability of the
inversion methods in estimating the photospheric energy and helicity injections. Section 5
summarizes our results and conclusions.

2. Data and Methods

In this section we describe how we download and process the vector magnetogram and
Dopplergram data to create data series of variable cadence and spatial resolution for NOAA
AR 11158. We then discuss how we optimize and employ optical flow methods to produce
additional estimates for the plasma velocity, and then invert the photospheric electric field
from this data. Finally, we present our method for deriving the energy and helicity injections
and their error estimates.

2.1. Processing of Vector Magnetogram and Dopplergram Data

As the input data for this work we use full-disk, disambiguated vector magnetograms and
Dopplergrams from the SDO/HMI instrument, which we download from the Joint Science
Operations Center (JSOC: jsoc.stanford.edu/). We use both the nominal 12-minute (720-
second) data (Hoeksema et al., 2014) and the novel 2.25-minute (135-second) data (Sun
et al., 2017). Both datasets have the same spatial resolution (0.5′′ per pixel in the plane of
sky), but differ in the methods used to process Stokes-vector data for the magnetic-field
inversion, the disambiguation of the azimuth, and in the noise levels (see Sun et al., 2017,
for details). Vector magnetograms in these datasets are disambiguated in the strong-field
pixels (thresholds |B| ≈ 200 Mx cm−2 and |B| ≈ 150 Mx cm−2 for 2.25- and 12-minute
data, respectively) using the minimum-energy method (Metcalf, 1994). In the weak-field
pixels three less sophisticated methods are offered as user-defined options (Hoeksema et al.,
2014), from which we choose to use the random disambiguation (as recommended, e.g., by
Liu et al., 2017; see also the discussion by Lumme, Pomoell, and Kilpua, 2017).

For Dopplergrams (i.e. LOS plasma-velocity maps) we use the VInv velocity provided
by the magnetic-field inversion of the vector-magnetogram datasets above. This differs from
the work of Kazachenko et al. (2015), who employed the VDop estimate based on the simpler
“MDI-like algorithm” (see Hoeksema et al., 2014 for details about the differences between
VInv and VDop). Similarly to Kazachenko et al. (2015), we calibrate the Dopplergrams us-
ing the magnetic calibration method of Welsch, Fisher, and Sun (2013), which removes
the observer motion, solar rotation, and convective blueshift from the data; the convective
blueshift bias velocity is determined as the median of Dopplergram velocities over all pixels
on polarity-inversion lines (PILs) sufficiently close to the disk center (<60◦ in heliocentric
angle). Before subtracting the constant blueshift bias velocity from full-disk Dopplergrams
we smooth these velocities in time using a temporal smoother with a width of 4.2 hours
(Kazachenko et al., 2015) to reduce temporal noise in the bias velocities.

http://jsoc.stanford.edu/
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Figure 1 Example Bz magnetogram and VLOS Dopplergram taken from our high-cadence 2.25-minute re-
projected series that tracks the NOAA Active Region 11158. Note that contrary to the usual convention VLOS
sign is negative for downflows of plasma. The frames show the active region on 14 February 2011, 01:48 UT
close to the central meridian passage of the active region, and magnetogram and Dopplergram data near this
time were used as a representative input for optimization of the velocity-inversion parameters (Section 2.3)
as well as for deriving the error estimates for energy and helicity injections (Section 2.6).

After downloading and processing the full-disk vector magnetograms and Dopplergrams
we reproject the magnetograms to a local Cartesian frame and vector basis (Bx,By,Bz)

using Mercator projection that tracks the NOAA Active Region 11158 over its disk transit
(see Figure 1 for example frames from this time series). We use here methods described by
Lumme, Pomoell, and Kilpua (2017), and this processing also includes removal of bad pixels
of the magnetic-field inversion (Hoeksema et al., 2014) and spurious temporal flips in the
azimuth disambiguation (Welsch, Fisher, and Sun, 2013), where we use identical parameters
for both 2.25- and 12-minute data (see Lumme, Pomoell, and Kilpua, 2017 for details).
Dopplergram data are interpolated to the same system as the magnetograms, keeping the
information about the LOS direction for each pixel. The resulting active-region patch has
547 × 527 pixels (with a projection pixel size of 0.03◦, 0.5′′ at the disk center, ≈ 364 km
on the Sun), and the series of reprojected magnetograms spans from 10 February 2011,
14:00 UT to 17 February 2011, 00:00 UT.

2.2. Sampling the Vector Magnetogram and Dopplergram Data

A direct comparison of the effect of cadence between the 2.25- and 12-minute vector mag-
netogram and Dopplergram datasets is problematic, as they have differences in the Stokes-
vector data processing and in the noise levels of the magnetic field (Sun et al., 2017). In order
to mitigate the effect of these differences, we created six datasets with variable cadence by
sampling the 2.25-minute data only. However, the 12-minute data were still included in the
study as a reference due to their general use in previous works and better availability. The
cadences created by sampling the 2.25-minute data are: 2.25 minutes (1 × 2.25 minutes),
11.25 minutes (5×2.25 minutes), 2.025 hours (54×2.25 minutes), 6 hours (160×2.25 min-
utes), 12 hours (320×2.25 minutes) and 24 hours (640×2.25 minutes), where the cadences
> 2.25 minutes are created from the 2.25-minute data by taking every 5th, 54th, 160th,. . .
frame from the 2.25-minute series. Hereafter we refer to the different cases by their cadence
(e.g. “6 hours”), except for the 11.25-minute case, which we refer also to as “mock nominal”
cadence, as it mimics the nominal 12-minute HMI cadence, but with noise characteristics
and Stokes data processing consistent with the 2.25-minute magnetogram and Dopplergram
data.
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It is evident that the lowest cadences (≥ two hours) undersample the data significantly
when considering the typical photospheric motions of Vh � 1 km s−1, for which we get
Vh�t/�x � 20, for cadences �t ≥ two hours and �x = 364 km (pixel size in our vector-
magnetogram series). This undersampling is expected to introduce issues particularly for
the optical-flow-velocity methods (Section 2.3) and may even introduce spurious energy
and helicity fluxes (see Leake, Linton, and Schuck, 2017). In order to study this effect in
our results we perform additional analysis for the lowest cadences (≥ two hours), for which
we create new data series by rebinning the data by a factor of 15 to yield a projected pixel
size of 0.45◦ which corresponds �x ′ ≈ 5470 km and Vh�t/�x � 1.3. (The amount of
undersampling for the rebinned data is discussed further in Appendix B.)

Finally, for the optical-flow-velocity inversion (Section 2.3), the electric-field inversion
(Section 2.4) and for computing the energy and helicity fluxes (Section 2.5), we mask the
noise-dominated pixels from the magnetograms to avoid spurious effects caused by noise
(see Kazachenko et al., 2015; Lumme, Pomoell, and Kilpua, 2017, for further discussion).
For this purpose we use a constant noise threshold of |B| = 300 Mx cm−2 for all of the
datasets discussed above. This threshold was used previously for 2.25-minute HMI data by
Sun et al. (2017).

2.3. Optical Flow Velocity Inversion

Having determined all components of the photospheric magnetic field and one (LOS) com-
ponent of plasma velocity from the processed data products (Sections 2.1 and 2.2), we need
two more velocity components to fully constrain the electric field from the ideal Ohm’s
law (Equation 1). We estimate (a part of) the missing velocity components using opti-
cal flow methods, which track motion of features in the magnetograms. In this study we
use two optical flow methods, each linked to a specific electric-field inversion method.
The first method is the Fourier Local Correlation Tracking (FLCT) method (Fisher and
Welsch, 2008) that estimates the horizontal velocity components parallel to the photosphere
V h = (Vx,Vy), which are then used as a part of the PDFI electric-field inversion method
(Section 2.4.1). The second method is the Differential Affine Velocity Estimator for Vector
Magnetograms (DAVE4VM) (Schuck, 2008) that provides the full three-component velocity
field V = (Vx,Vy,Vz), which is then used to derive the two DAVE4VM-based electric-field
estimates (Section 2.4.2).

The FLCT method determines the horizontal optical flow V h between two Bz magne-
tograms Bz(xi, yj , t1) and Bz(xi, yj , t2) at each pixel (xi, yj ) by finding a shift (δx, δy) that
maximizes the cross-correlation function Ci,j (δx, δy) between the first image S1(x, y) and
second image S2(x, y) – both windowed to include only the neighborhood of the pixel in
question:

Ci,j (δx, δy) =
∫∫

dx dyS
i,j∗
1 (−x,−y)S

i,j

2 (δx − x, δy − y), (2)

where

S
i,j

k (x, y) = Bz(x, y, tk) exp

[
− (x − xi)

2 + (y − yj )
2

σ 2
FLCT

]
(3)

is the windowed subimage centered at the pixel (xi, yj ); the width of the Gaussian window-
ing function σFLCT is a free parameter of the method. The optimal shift (δx, δy) is determined
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to subpixel accuracy (see Fisher and Welsch, 2008, for details), and it gives the velocity:

V
i,j

h

(
(t1 + t2)/2

) = 1

�t
(δx, δy)

∣∣∣∣{(δx,δy)|max[Ci,j (δx,δy)]}
, (4)

where �t = t2 − t1 is the temporal distance between the magnetograms.
As discussed by Schuck (2005), the velocity of Equation 4 determined by maximizing

the correlation in Equation 2 fulfills (in a least-squares sense) the advection equation:

∂Bz

∂t
+ V h · ∇hBz = 0, (5)

weighted by the Gaussian windowing function of Equation 3. In the DAVE4VM method this
minimization approach is generalized for the normal (z) component of Faraday’s law under
the assumption of the ideal Ohm’s law:

∂Bz

∂t
= −[∇ × E]z = [∇ × (V × B)

]
z
= −∇h · (BzV h − VzBh), (6)

and the method determines a full three-component velocity field V = (Vx,Vy,Vz) at each
pixel (xi, yi) that minimizes the deviations to the normal component of the induction equa-
tion (Equation 6) in a least-squares sense (Schuck, 2008). The input for this minimization
consists of the temporal derivative of the Bz component ∂Bz/∂t and the spatial derivatives
of the magnetic field (∂lBm, l ∈ {x, y} and m ∈ {x, y, z}) determined from a time series of
vector magnetograms. The input data are windowed similarly to Equation 3, but instead of
a Gaussian windowing function, DAVE4VM employs a square top hat as the windowing
function. The side length of the top hat is a free parameter, which we hereafter refer to as
the “DAVE4VM window size”.

When specifying the input data for FLCT and DAVE4VM, we employ a central dif-
ference scheme where magnetograms at times t and t ± �t are used to estimate the ve-
locity at time t (see Appendix A.1). We also remove the noise-dominated pixels (|B| <

300 Mx cm−2) from the output (see Appendix A.2).
Similarly to the work of Schuck (2008) and Liu and Schuck (2012), we choose the

DAVE4VM window size so that the output velocity V optimally reproduces the normal
component of the induction equation (Equation 6) over the entire magnetogram, excluding
the noise-dominated pixels |B| < 300 Mx cm−2. The optimal σFLCT parameter is chosen
in a similar fashion so that the output velocity best optimizes the advection equation for
the Bz component of the magnetic field (Equation 5) (as suggested by Fisher and Welsch,
2008), again excluding the masked noise-dominated pixels (|Bz| � 300 Mx cm−2). Further
details of the optimization and the analysis of the results are presented in Appendix B. The
optimization results for all of our input datasets are collected in Table 2.

After specifying the optimal FLCT and DAVE4VM parameters for all of our vector mag-
netogram datasets (see Section 3.3), we then run the velocity-inversion codes for all input
magnetogram time series of various cadence and spatial resolution (Section 2.2) producing
V h(FLCT) and V (DAVE4VM) time series for each to be used in the electric-field inversion.

2.4. Electric-Field Inversion

After producing time series of the photospheric vector magnetogram, Dopplergram, and
optical-flow-velocity estimates for variable cadence and spatial resolution, we compute the
photospheric electric field using each of the input data series and three inversion schemes:
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one based on the direct use of the PDFI method and two based on the DAVE4VM velocity
inversion. These are presented in detail below. The temporal and spatial discretization used
in the inversion methods below as well as the masking of the noise-dominated pixels (|B| <
300 Mx cm−2) are detailed in Appendix A.

2.4.1. PDFI Method

The PTD-Doppler-FLCT-Ideal (PDFI) method (Kazachenko, Fisher, and Welsch, 2014;
Fisher, Welsch, and Abbett, 2012) is a comprehensive, publicly available approach for pho-
tospheric electric-field inversion, and the method employs all established types of input data:
magnetograms, Dopplergrams, and optical flow estimates. The approach is based on the de-
composition of the electric field into the inductive EI and non-inductive component −∇ψ :

E = EI − ∇ψ. (7)

The inductive (divergence-free) component is constrained by Faraday’s law:

∇ × E = ∇ × EI = −∂B

∂t
, (8)

where ∂B/∂t may be estimated from a time series of vector magnetograms. In the PDFI
method the inductive component is solved using the Poloidal–Toroidal Decomposition
(PTD) (Fisher et al., 2010; Chandrasekhar, 1961), and the resulting electric field fulfills the
z component of Faraday’s law exactly – except for small numerical errors detailed in Ap-
pendix A.3. The non-inductive (curl-free) component requires additional constraints from
the data that may be retrieved from the ideal Ohm’s law and the velocity estimates:

∇2ψ = −∇ · E = ∇ · (V × B). (9)

In the PDFI method, the Poisson equation above is not solved as such, but is instead split into
three components: the Doppler contribution (D), FLCT contribution (F), and Ideal (I) con-
tribution. The Doppler and FLCT contributions are deduced from Dopplergram and FLCT
optical-flow-velocity estimates with spatial weighting, whereas the ideal contribution en-
sures that the total electric field (Equation 7) is perpendicular to the magnetic field as im-
plied by the ideal Ohm’s law (see Kazachenko, Fisher, and Welsch, 2014; Fisher et al., 2019,
for details).

We employ the latest version of the PDFI method, the PDFI_SS software (cgem.ssl.
berkeley.edu/cgi-bin/cgem/PDFI_SS/), which has several changes as compared to the origi-
nal method described in Kazachenko, Fisher, and Welsch (2014). The updates include the
use of a staggered grids and spherical coordinates (“SS” suffix stands for “spherical stag-
gered”), and they are presented in detail by Fisher et al. (2019) and summarized in Ap-
pendix A.3.

Since our input data patch is small (latitudinal half-width of the region ≈8◦), distortion
effects caused by the use of a Mercator projection remain small: 1 − cos2 8◦ ≈ 2% (see, e.g.,
Kazachenko et al., 2015, for details). Therefore we get little benefit from using spherical
coordinates in our analysis. Moreover, the DAVE4VM velocity inversion (Section 2.3) op-
erates on a Cartesian plane by default, and transforming into spherical coordinates would
require modifications to the procedure. Therefore we decided to remain in the Cartesian ap-
proximation, which, however, requires modifications to the use of the PDFI_SS software that
employs spherical coordinates by default. These modifications are detailed in Appendix A.3.

http://cgem.ssl.berkeley.edu/cgi-bin/cgem/PDFI_SS/
http://cgem.ssl.berkeley.edu/cgi-bin/cgem/PDFI_SS/
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2.4.2. DAVE4VM-Based Methods

Since DAVE4VM provides all three components of the velocity fields for the given vector
magnetogram input, the output can be used to estimate the photospheric electric field di-
rectly from the ideal Ohm’s law (Equation 1), E = −V D × B , where V D is the DAVE4VM
velocity estimate. We use this as our first DAVE4VM-based electric-field estimate and here-
after refer to it as raw DAVE4VM estimate or raw DAVE4VM electric field.

The raw DAVE4VM estimate is the easiest to acquire, but as already noted by Schuck
(2008) it is not necessarily inductive, i.e. the raw DAVE4VM electric field does not neces-
sarily fulfill the normal component of Faraday’s law (or the normal component of the ideal
induction equation). This inconsistency arises from two facts: First, the DAVE4VM method
was intentionally formulated so that the output velocity fulfills the normal component of
the induction equation (Equation 6) only “statistically within the window by minimizing the
mean squared deviations from the ideal induction equation” (Schuck, 2008). This is based
on the idea that real magnetograms contain noise, and therefore complete inductiveness and
thus also complete reproduction of the noise is not desired. Second, the minimization of
the deviations from the induction equation is done at each pixel over a top-hat windowed
subimage surrounding the pixel, and therefore the minimization problem at each pixel is dif-
ferent from the others. Thus, there is no guarantee or constraint that would force the velocity
fields at neighboring pixels to yield inductivity in the chosen discretization of the induction
equation.

Although the DAVE4VM estimate is inductive to high accuracy in ANMHD tests
(Schuck, 2008), as pointed out by Lumme, Pomoell, and Kilpua (2017) the inductivity of the
raw DAVE4VM estimate is, however, very poor for real magnetogram input. As indicated
by the results presented in Appendix B, a likely explanation for this is the larger spatial and
temporal noise and higher spatial structuring in real magnetograms as compared to the very
smooth ANMHD data. The fact that the field does not drive the magnetic-field evolution as
in the observations presents significant problems both for the physical interpretation of the
field and for its potential use as a data-driven boundary condition for coronal simulations.
To remedy this, we recomputed a second electric-field estimate from the DAVE4VM output,
in which the inductivity is ensured (similarly as suggested in Section 3.2 of Schuck, 2008).
We employ here the decomposition of Equation 7, from which the inductive component is
solved using the machinery of the PDFI method, being thus equivalent to the inductive com-
ponent EI of our PDFI estimates (Section 2.4.1, Equations 7 and 8), whereas the horizontal
components of the non-inductive component −∇hψ are solved from:

∇2
hψ = −∇h · E = ∇h · (V D × B)h (10)

where E is the raw DAVE4VM electric field and V D is the DAVE4VM velocity. The Poisson
equation is solved using the same numerical tools as in the PDFI method (Kazachenko,
Fisher, and Welsch, 2014; Fisher et al., 2019). We refer to the total electric-field estimate,

E = EI − ∇hψ, (11)

as the inductive DAVE4VM estimate or inductive DAVE4VM electric field. Note that
∂ψ/∂z = 0 for the non-inductive component −∇ψ = −∇hψ of the inductive DAVE4VM
estimate.
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2.5. Estimates of the Energy and Relative Helicity Injections

Total injections of magnetic energy and relative helicity can be estimated by integrating the
photospheric vertical Poynting and relative helicity fluxes both in space and time (Berger
and Field, 1984; Démoulin, 2007; Liu and Schuck, 2012; Kazachenko et al., 2015; Lumme,
Pomoell, and Kilpua, 2017):

Em(t) =
∫ t

0
dt ′

dEm

dt ′
=

∫ t

0
dt ′

∫
dASz = 1

μ0

∫ t

0
dt ′

∫
dA(E × B) · ẑ, (12)

HR(t) =
∫ t

0
dt ′

dHR

dt ′
= −2

∫ t

0
dt ′

∫
dA(Ap × E) · ẑ. (13)

We use here a time discretization consistent with the electric-field inversion (see Ap-
pendix A.1). The vector potential Ap is solved from the Bz component using the same
Poloidal–Toroidal Decomposition method as in solving the inductive electric field EI used in
the PDFI and inductive DAVE4VM electric-field estimates (Section 2.4 and Appendix A.3,
Equations 7, 8, 10, and 11). The same Ap is used to derive the helicity flux for all of our
three electric-field estimates. It is also worth noting that we do not include the zero-padding
regions, which are added to the input data maps in the inversion, in the area integrals above
(the padding is added only for numerical convenience in order to acquire more stable results
for the solutions of Poisson equations; see Kazachenko, Fisher, and Welsch, 2014).

Note that in computing the Poynting flux we must mask the input magnetogram data
consistently with the electric-field inversion (Section A.2). However, when computing the
helicity flux, the masking is already included in the computation of Ap and E.

2.6. Error Analysis

We estimate the error in our final total energy and helicity injection estimates arising from
the magnetogram noise following the Monte Carlo approaches of Liu and Schuck (2012)
and Kazachenko et al. (2015). We select a representative frame from our NOAA AR 11158
time series, more specifically the frame on 14 February 2011, 01:48 UT close to the central
meridian passage of the active region, and perform 200 (as Liu and Schuck, 2012) Monte
Carlo realizations for the velocity and electric-field inversion results for this frame and for
each cadence; the first realization in the ensemble is the original unperturbed case. For each
of the 199 additional realizations we perturb the input magnetogram data by adding random
Gaussian noise to each pixel. For the data series created from the 12-minute HMI input
data we perturb the magnetic-field components (Bx,By,Bz) with Gaussian noise of width
(σx, σy, σz) = (100,100,30) Mx cm−2 using the values of Kazachenko et al. (2015) derived
for SDO/HMI data in the same active region. Although we have determined the (σx, σy, σz)

values also for our own data series by fitting a Gaussian to the weak-field core (DeForest
et al., 2007; Welsch, Fisher, and Sun, 2013; Kazachenko et al., 2015), we find that the val-
ues are too strongly dependent on the choice of the weak-field disambiguation method (Sec-
tion 2.1). Therefore we use the values of Kazachenko et al. (2015), which are derived from
a dataset where a consistent disambiguation method is used for all pixels. We employ larger
perturbations for all data series created from the 2.25-minute HMI magnetogram input, and
add 50/

√
3 Mx cm−2 to each of the (σx, σy, σz) values of the 12-minute data, consistent with

the 50 Mx cm−2 larger noise level of |B| for 2.25-minute magnetograms (Sun et al., 2017).
Using the perturbed data from the Monte-Carlo runs, we estimate the errors for the en-

ergy dEm/dt and helicity dHR/dt injection rates (Equations 12 and 13) by computing the
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standard deviation (σdQ/dt , Q ∈ {Em,HR}) over the 200-element ensemble. We determine a
final relative error σ̄dQ/dt estimate by computing the ratio:

σ̄dQ/dt = σdQ/dt

μdQ/dt

(14)

where μ is the mean over the ensemble.
The errors of the energy and helicity injection rates (σdQ/dt = σ̄dQ/dtdQ/dt ) are propa-

gated in the time integration to yield the errors of the total injections σQ(t) at each time t .
This is done using the following scheme: First, the relative error estimates σ̄dQ/dt above are
interpreted as fixed constants over the entire time series. Second, all dQ/dt (ti ) estimates in
the time series are assumed to be independent, i.e. covariances cov(dQ/dt (ti),dQ/dt (tj ))

vanish for all pairs ti , tj . Using the basic properties of the variance and standard deviation
(e.g. Christensen, 1996) and the fact that we use the trapezoidal rule in the time integration
of Equations 12 and 13,

Q(tN) =
{

1

2

[
dQ

dt
(t1) + dQ

dt
(tN )

]
+

N−1∑
i=2

dQ

dt
(ti)

}
�t, (15)

we get

σQ(tN ) =
√√√√

{
1

4

[
σ 2

dQ/dt (t1) + σ 2
dQ/dt (tN )

] +
N−1∑
i=2

σ 2
dQ/dt (ti )

}
�t2

= σ̄dQ/dt�t

√√√√1

4

[
dQ

dt
(t1)2 + dQ

dt
(tN )2

]
+

N−1∑
i=2

dQ

dt
(ti )2 (16)

where σdQ/dt = σ̄dQ/dtdQ/dt , σ̄dQ/dt is our relative error estimate for the injection rate, and
�t = (tN − t1)/(N − 1) is the cadence of the data series.

We have collected the relative error estimates for the rate of changes (dEm/dt , dHR/dt )
over all of our input datasets in Table 1. Further validation of the results and discussion can
be found in Section 4.1.

3. Results

We employ Equations 12 and 13 to estimate the total photospheric energy and helicity injec-
tion for each of our electric-field and magnetogram time series of various cadence and spatial
resolutions. Furthermore, as described in Section 2.6, we estimate error bars for Em(t) and
HR(t) at each time t . The sections below illustrate the findings for each of our three electric-
field inversion methods: PDFI as well as the raw and inductive DAVE4VM methods.

3.1. PDFI Estimates

Figures 2 and 3 illustrate the energy and helicity injections (upper panels) and the injection
rates (lower panels) derived from the PDFI electric fields (Section 2.4.1) for all cadences
with full spatial resolution over the interval 10 February 2011, 14:48 UT – 17 February 2011,
00:00 UT. The time evolution of the energy and helicity injections in NOAA AR 11158 is
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Figure 2 Energy Em(t) injections (upper panel) and energy injection rates dEm/dt (lower panel) for NOAA
AR 11158 derived from the PDFI electric-field estimates with variable cadence of the input data. Noise-re-
lated error bars of the injection estimates are shown by the shaded regions surrounding the curves in the
upper panel. Note that the injection rate curves with cadence ≤ 12 minutes have been smoothed in time using
a boxcar of four hours to better bring out the temporal trends. Vertical dotted line indicates the strongest X2.2
class flare in AR 11158, and the horizontal solid lines indicate the zeros of the y-axes. The black error bar at
the time of the flare in the upper panel illustrates the combined method- and noise-related errors of the PDFI
energy injection estimate for the 11.25-minute case (see text for details).

discussed in detail, e.g. by Liu and Schuck (2012), Kazachenko et al. (2015), and Lumme,
Pomoell, and Kilpua (2017), so we omit most of the discussion in this work. However, we
briefly classify the basic phases of the evolution within our analysis interval: the emergence
of the active region on 10 February 2011, 22:00 UT (as defined in the HMI SHARP data
product: Bobra et al., 2014), after which a time interval of slow magnetic flux emergence
and energy and helicity injection continues until 12 February 2011, ≈ 18:00 UT. After this
time a period of strong flux emergence begins (see Figure 4 in Lumme, Pomoell, and Kilpua,
2017), accompanied by enhanced energy and helicity injections that continue until an X2.2
flare occurs on 15 February 2011, 01:44 UT (dotted vertical line in the plots). After the
flare, the PDFI energy injection saturates, with the 11.25-minute estimate reaching Em(t) ≈
1 × 1033 ergs, whereas the helicity injection continues to increase until 16 February 2011,
≈ 00:00 UT, with the 11.25-minute estimate reaching HR(t) ≈ 8.7 × 1042 Mx2, after which
it begins to steeply decrease.

The errors arising from the magnetogram noise, computed using the Monte Carlo ap-
proach, are illustrated by the shaded regions around the injection curves in Figures 2 and 3,
upper panels. In many cases the error bars are vanishingly small (� 1%; see Section 4.1 for
further discussion) and thus invisible in the figure. The error bars are visible for the highest
cadence, 2.25 minutes (blue curve), and the mock nominal HMI cadence of 11.25 minutes
(black curve), which have the largest errors also in the injection rates for the PDFI estimates
(Table 1, second column). Consequently, the energy estimates for these cadences are con-
sistent within error bars (± 3%) at the time of the X-class flare. The difference in the 2.25-
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Figure 3 Helicity HR(t) injections (upper panel) and helicity injection rates dHR/dt (lower panel) for
NOAA AR 11158 derived from the PDFI electric-field estimates with variable cadence of the input data.
Noise-related error bars of the injection estimates are shown by the shaded regions surrounding the curves in
the upper panel. Note that the injection rate curves with cadence ≤ 12 minutes have been smoothed in time
using a boxcar of four hours to better bring out the temporal trends. Vertical dotted line indicates the strongest
X2.2 class flare in AR 11158, and the horizontal solid lines indicate the zeros of the y-axes. The black error
bar at the time of the flare in the upper panel illustrates the combined method- and noise-related errors of the
PDFI energy injection estimate for the 11.25-minute case (see text for details).

Table 1 Relative errors σ̄dEm/dt , σ̄dHR/dt for the energy and helicity injection rates arising from the magne-
togram noise. Values are derived for a representative frame on 14 February 2011, 01:48 UT close to the central
meridian passage of the active region using each of our magnetogram/Dopplergram datasets, and velocity and
electric-field inversion methods.

Cadence PDFI raw DAVE4VM ind. DAVE4VM

σ̄dEm/dt , σ̄dHR/dt σ̄dEm/dt , σ̄dHR/dt σ̄dEm/dt , σ̄dHR/dt

[%] [%] [%]

2.25 min 33, 58 30, 20 33, 170

11.25 min 17, 32 12, 6.2 18, 66

12 mina 11, 14 6.7, 2.8 10, 27

2.025 h 2.4, 5.9 9.7, 14 3.1, 88

– (rebin 15×) 2.5, 11 4.4, 7.8 2.8, 17

6 h 1.4, 3.0 19, 6.3 1.4, 56

– (rebin 15×) 0.98, 4.8 4.7, 12 1.2, 18

12 h 1.6, 4.4 9.4, 12 1.6, 81

– (rebin 15×) 0.7, 2.7 1.4, 1100b 0.78, 3.2

24 h 6.5, 5.0 17, 23 5.1, 10

– (rebin 15×) 7.0, 8.6 2.2, 5.1 7.9, 0.17

aDifferent data sources, and thus different magnetogram noise levels. See Sections 2.1, 2.2 and 2.6 for details.

bThis value is spurious. See Section 4.1 for details.
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and 11.25-minute helicity injection estimates is slightly larger, 8%, which exceeds the com-
bined error bars by 20% (in the combined error bars the errors of both estimates are added
up in quadrature). The nominal 12-minute estimate (purple curve) has a different data source
(Sections 2.1 and 2.2), different magnetogram noise characteristics (Section 2.6), and a dif-
ferent σFLCT parameter (Table 2), and thus it results in different injections and error bars,
when compared to the mock nominal cadence of 11.25 minutes (6% and 10% larger in Em

and HR at the time of the X-class flare, both above noise-related error bars). Our 12-minute
PDFI estimates differ slightly from the results of Kazachenko et al. (2015), who used similar
input data for this active region: our energy and helicity injection estimates are smaller than
theirs by 9% and 20% at the time of the X-class flare, respectively. The difference arises
both from the updates in the electric-field inversion code (Section 2.4.1 and Appendix A.3),
differences in the FLCT optical flow inversion (Section 2.3 and Appendices A.1 and A.2) as
well as from the differences in data processing and Dopplergram data source (Section 2.1).

Although some of the injection estimates discussed above have differences larger than the
noise-related error bars, all 2.25-, 11.25-, and 12-minute cases are within the method-related
errors of the PDFI method estimated from the ANMHD tests (see Introduction, Section 1),
which are: 25% for the energy injection and 10% for the helicity injection (Kazachenko,
Fisher, and Welsch, 2014; Kazachenko et al., 2015). The combined method- and noise-
related errors for the 11.25-minute estimates are illustrated by the black error bars in Fig-
ures 2 and 3, upper panels. However, one should note that we follow here the approach of
Kazachenko et al. (2015) and employ the maximal errors from Kazachenko, Fisher, and
Welsch (2014). Since the errors depend on the viewing angle (i.e. the angle between the z

direction and the average LOS direction over the active-region patch), at smaller viewing
angles the errors are smaller: e.g. for angles <20◦ the error in the energy flux drops to 5%,
while the error in helicity flux remains at 10%. Moreover, even though Kazachenko, Fisher,
and Welsch (2014) define these errors for the injection rates (dEm/dt , dHR/dt ) they are not
added up in quadrature in the time integration (as in Equation 16) since we consider these
errors to be systematic in nature, and thus we use them directly also in Em(t) and HR(t). In
other words, the method-related error may result in a systematic under/overestimation of in-
jection rates, which would then be directly visible as an equal relative under/overestimation
in the total injections.

When the cadence is lowered to ≥ two hours (orange, green, red, and yellow curves) we
see a gradual decrease in the total energy injection as a function of �t with accumulated en-
ergy at the time of the X-class flare dropping monotonically from 86% to 22% of the 11.25-
minute mock nominal case over the cadences of 2 to 24 hours. For helicity we see a similar
but less monotonic decrease with accumulated helicities ranging from being 7% larger (two-
hour cadence) to 60% smaller (24-hour cadence) when compared to the 11.25-minute mock
nominal case. Interestingly, for both energy and helicity injection, the two-hour injection es-
timate is very close to the high-cadence estimates and well consistent with the 11.25-minute
estimate within the combined noise- and method-related error bars. However, the datasets
with cadences ≥ six hours underestimate the energy and helicity injections beyond all error
bars.

When we look at the rate of changes dEm/dt and dHR/dt (Figures 2 and 3, lower panels),
we see reasonably consistent trends over all cadences. For example, the 2.25-minute to two-
hour cases are very similar, and even the 12-hour case approximates well the trends of the
higher-cadence curves (where the highest ≤ 12-minute cadences are smoothed using a four-
hour boxcar window to better discern the trends). It has been reported that the highest 2.25-
minute cadence allows solar p-mode (5-minute) oscillations to pass over to the dEm/dt and
dHR/dt injection rates (X. Sun, private communication, 2018). We also confirm spikes at
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Figure 4 Energy Em(t) injections (upper panel) and energy injection rates dEm/dt (lower panel) for NOAA
AR 11158 derived from the raw DAVE4VM electric-field estimates with variable cadence of the input data.
Noise-related error bars of the injection estimates are shown by the shaded regions surrounding the curves in
the upper panel. Note that the injection rate curves with cadence ≤ 12 minutes have been smoothed in time
using a boxcar of four hours to better bring out the temporal trends. The 11.25-minute PDFI estimate from
Figure 2 is also plotted for reference (red curve), and the combined method and noise-related error bars are
plotted for both 11.25-minute raw DAVE4VM and PDFI estimates (black and red bars) at the time of the
X-class flare (vertical black dotted line).

≈ five minutes in the Fourier power spectra for both. This signal does not propagate notably
to the time-integrated quantities Em(t) and HR(t), so we will neglect it henceforth.

As explained in Section 2.2, due to the significant undersampling at the lowest cadences
(≥ two hours) we recomputed the energy and helicity injections also from the 15-times re-
binned magnetogram series. When it comes to the PDFI results this rebinned version brought
very few new features to the energy injection curves of Figure 2, and produced significant
loss of helicity injection signal, most dramatically for two-hour data, which dropped by
≈ 90% (see Electronic Supplementary Figure 16).

3.2. Raw DAVE4VM Electric-field Estimates

Figures 4 and 5, upper panels, illustrate the energy and helicity injections computed from
the raw DAVE4VM electric-field estimate (Section 2.4.2). First, we notice that the high-
est 2.25-minute cadence produces a clearly higher energy injection (blue curve) than the
mock nominal 11.25-minute (black curve) and the nominal 12-minute (purple curve, mostly
hidden behind the black curve) cases, being ≈ 50% larger at the time of the X-class flare,
whereas the latter two differ <1% from each other. When we look at the energy injection
rate dEm/dt (Figure 4, lower panel), we find that the discrepancy between the 2.25-minute
and 11.25-minute cases in the energy injection is visible as systematically larger dEm/dt

values in the 2.25-minute case, whereas the temporal trends are similar. When it comes to
the lowest cadences (≥ two hours), the raw DAVE4VM estimate loses practically all of the
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Figure 5 Helicity HR(t) injections (upper panel) and helicity injection rates dHR/dt (lower panel) for
NOAA AR 11158 derived from the raw DAVE4VM electric-field estimates with variable cadence of the input
data. Noise-related error bars of the injection estimates are shown by the shaded regions surrounding the
curves in the upper panel. Note that the injection rate curves with cadence ≤ 12 minutes have been smoothed
in time using a boxcar of four hours to better bring out the temporal trends. The 11.25-minute PDFI estimate
from Figure 3 is also plotted for reference (red curve), and the combined method and noise-related error bars
are plotted for both 11.25-minute raw DAVE4VM and PDFI estimates (black and red bars) at the time of the
X-class flare (vertical black dotted line).

energy injection signal producing � 2% of the high-cadence energy injection estimates at
the time of the flare.

Both the helicity injection and injection rate curves (Figure 5, upper and lower panel,
respectively) of the three highest cadences (2.25, 11.25, and 12 minutes) are more consistent
with each other than in the energy injection case, the 2.25-minute total injection being “only”
≈ 20% larger than the 11.25-minute case at the time of the X-class flare. Similarly to the
energy injection, the lowest cadences produce very small helicity injection, the two-hour
case (orange curve) yields 28% and ≥ six-hour cases (green, yellow, and magenta curves)
only ≤ 6% of the 11.25-minute injection at the time of the flare.

Due to very similar data processing and inversion scheme, our 12-minute raw DAVE4VM
energy and helicity injection estimates at the time of the X-class flare differ � 2% from the
results of Lumme, Pomoell, and Kilpua (2017) for AR 11158. Lumme, Pomoell, and Kilpua
(2017) provide further comparison to other raw 12-minute DAVE4VM estimates for AR
11158 by Liu and Schuck (2012) and Tziotziou, Georgoulis, and Liu (2013).

The noise-related error estimates are vanishingly small (< 1%) for the raw DAVE4VM
estimates (shaded regions around each curve are practically invisible in Figures 4 and 5,
upper panels), but the method-related error bars from the ANMHD-tests are again signifi-
cantly larger: 24% and 6% for the energy and helicity injections, respectively (Schuck, 2008;
Kazachenko et al., 2015). They are plotted for the 11.25-minute estimates in Figures 4 and 5
– combined with the noise-related error bars – as black error bars at the time of the X-class
flare.
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Figure 6 Raw DAVE4VM energy Em(t) (upper panel) and helicity HR(t) (lower panel) injections derived
from the full-resolution and 15-times rebinned estimates for the lowest cadences of 2, 6 and 12 hours. The
11.25-minute full resolution PDFI and raw DAVE4VM estimates are also plotted for reference (red and black
curves) with their combined method- and noise-related error bars at the time of the X-class flare (vertical
black dotted line).

When comparing the 11.25-minute PDFI reference curve (red curve) and the raw
DAVE4VM result (black curve) for energy injection in Figure 4, we find similar evolu-
tion between the 11.25- and 12-minute DAVE4VM energy injection curves and the PDFI
case until the time of the X-class flare (where the difference is 3%). After the flare, the
raw DAVE4VM energy injection continues to increase, whereas the rate of change in the
PDFI case becomes occasionally negative and the total injection saturates. Consequently,
the DAVE4VM estimate is 57% larger at the end of 16 February 2011. When it comes to the
helicity injection (Figure 5, upper panel), the PDFI and DAVE4VM results diverge already
in early 14 February 2011, the 11.25-minute DAVE4VM result being 45% larger than the
PDFI estimate at the time of the flare, which is beyond the combined noise- and method-
related error bars. Due to the strong negative dHR/dt of the PDFI estimate after 16 February
2011, 00:00 UT (Figure 5, lower panel) the PDFI helicity injection is approximately zero
at the end of our time series, whereas the raw DAVE4VM estimate has reached a value of
2.6HR(tflare). This inconsistency between the trends is discussed further in Section 4.2.

Figure 6 illustrates the raw DAVE4VM energy and helicity injection estimates derived
from both the full resolution and the 15-times rebinned input data. We find a significant
increase in most of the estimates after rebinning. More specifically, the 2-, 6-, and 12-hour
energy injections (blue/yellow, orange/green, and light blue/purple curves in Figure 6) are
increased from approximately zero to 53%, 29%, and 17% of the 11.25-minute full resolu-
tion reference injection (black curve) at the time of the X-class flare. Similarly, the corre-
sponding helicity injections are increased: two-hour estimate by a factor of 1.9 reaching 52%
of the full resolution 11.25-minute reference, six-hour estimate by a factor of 4.4 reaching
28% of the reference, and 12-hour estimate increasing from approximately zero to 17% of
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Figure 7 Energy Em(t) injections (upper panel) and energy injection rates dEm/dt (lower panel) for NOAA
AR 11158 derived from the inductive DAVE4VM electric-field estimates with variable cadence of the input
data. Noise-related error bars of the injection estimates are shown by the shaded regions surrounding the
curves in the upper panel. Note that the injection rate curves with cadence ≤ 12 minutes have been smoothed
in time using a boxcar of four hours to better bring out the temporal trends. The 11.25-minute PDFI and
raw DAVE4VM estimates (red and orange curves) with their combined method and noise-related error bars
(orange and red bars) are plotted at the time of the X-class flare (vertical black dotted line).

the reference. Despite the significantly better recovery of the injection signals in the rebinned
case, none of the rebinned estimates are consistent with the full resolution high-cadence ref-
erence estimates within the combined method- and noise-related error bars (black error bars
in Figure 6) at the time of the X-class flare.

3.3. Inductive DAVE4VM Electric-field Estimates

Figures 7 and 8, upper panels, illustrate the energy and helicity injections computed from the
inductive DAVE4VM estimates (Section 2.4.2). Similarly to the raw DAVE4VM estimate,
the 2.25-minute estimate (blue curves) overestimates the energy injection of the 11.25- and
12-minute cases (black and purple curves, which are again mutually consistent, the latter
curve being mostly hidden behind the former), but now clearly less, by only 16% (instead
of ≈ 50% as in the raw case) at the time of the X-class flare. The temporal trends of both
Em(t) and dEm/dt are very similar over all three cadences. Unlike for the raw DAVE4VM
estimate, now the lowest cadences (≥ two hours; green, orange, and light blue curves) also
produce noticeable energy injections reaching � 50% of the 11.25-minute estimate at the
time of the X-class flare. However, this arises mostly from the inductive component of the
electric field, the DAVE4VM-based non-inductive contribution being vanishingly small.

The 11.25-minute inductive DAVE4VM energy injection estimate (black curve) over-
estimates the raw DAVE4VM estimate (orange curve) in Figure 7, upper panel. However,
the differences between the inductive and raw estimates as well as the PDFI estimate are
within the combined noise- and method-related error bars of the raw DAVE4VM and the
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Figure 8 Helicity HR(t) injections (upper panel) and helicity injection rates dHR/dt (lower panel) for
NOAA AR 11158 derived from the inductive DAVE4VM electric-field estimates with variable cadence of the
input data. Noise-related error bars of the injection estimates are shown by the shaded regions surrounding the
curves in the upper panel. Note that the injection rate curves with cadence ≤ 12 minutes have been smoothed
in time using a boxcar of four hours to better bring out the temporal trends. The 11.25-minute PDFI and
raw DAVE4VM estimates (red and orange curves) with their combined method and noise-related error bars
(orange and red bars) are plotted at the time of the X-class flare (vertical black dotted line).

PDFI estimates (red/orange bars) at the time of the X-class flare. When it comes to the he-
licity injections in Figure 8, upper panel, HR(t) curves have very similar temporal trends
between the raw and inductive DAVE4VM estimates, however with noticeable systematic
differences. The raw estimate is larger than the inductive one by � 27% for cadences ≤ six
hours at the time of the X-class flare, which are above the method-related error bars of the
raw estimate. The inductive DAVE4VM helicity estimate is 18% larger than the PDFI case,
beyond all error bars.

Unlike in the raw DAVE4VM energy and helicity estimates, the noise-related error bars
(indicated by the shaded regions around the curves in Figures 7 and 8, upper panels) are not
completely insignificant for the inductive DAVE4VM estimates, particularly in the case of
helicity injection. For example, the relative error in the 2.25-minute energy estimate is 2%,
and the relative errors in the 2.25-minute and two-hour helicity estimates are 13% and 27%,
respectively.

Finally, we tested the effect of rebinning the data for the lowest cadences (≥ two hours)
also with the inductive DAVE4VM estimate. In energy injection curves (see Electronic Sup-
plementary Figure 17, upper panel) we find consistent increases ≈ 20 – 70% over all ca-
dences, while the temporal trends remained the same. The effect of the rebinning on the
helicity injection is, however, clearly more dramatic. As illustrated by the lower panel of
Figure 17 in the Electronic Supplementary Material, the 2-, 6-, and 12-hour estimates change
their sign in the rebinning yielding negative total injections at the time of the X-class flare.
This result is problematic and likely spurious, and it will be discussed more in detail in
Section 4.2.
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4. Discussion

In this section we discuss the findings made in Section 3, their reliability, and possible issues.
We also compare our results to previous works and discuss some general implications of our
results.

4.1. Further Testing of the Error Estimates

One central finding of our study of the energy and helicity injections in Section 3 was that
the error bars arising from the noise in the magnetogram data were very small, often <1%,
which is clearly less than the errors of ≈ 10% reported, e.g., by Kazachenko et al. (2015).
The small magnitude of the errors arises from the error propagation in the temporal inte-
gration, where the errors of individual injection rates (dEm/dt and dHR/dt ), which may
be substantial (see Table 1), are summed in quadrature, thus reducing the error in the total
injections (Em(t) and HR(t)) roughly by a factor of

√
N , where N is the number of times

ti ≤ t in the time series.
Our error estimates have, however, significant uncertainties. One particular issue is the

use of constant relative error estimates for the injection rates over the entire temporal inter-
val, derived for a single representative frame near 14 February 2011, 01:48 UT. Although
the frame was chosen carefully, so that AR 11158 has its central magnetic structures already
emerged at this time while the region is still experiencing strong flux emergence and en-
ergy and helicity injection, there is no guarantee that the relative error estimate is accurate
when used over the entire analysis interval. Thus, to validate this approach we conducted
further Monte Carlo tests. Instead of studying a single frame in the time series, we perturbed
the magnetic-field data with the same Gaussian noise that we used for the representative
frame (Section 2.6) at all times, and computed the total energy and helicity injections for
each Monte Carlo realization. Due to our large number of 33 data series we, however, could
not afford to do as many realizations as for the representative frame, and thus we low-
ered the number of realizations from 199 to 10 for the full-resolution cases, and 20 for the
rebinned, low-cadence cases. This small number of MC realizations makes the statistical
uncertainty of these additional error estimates very high, and thus the quantitative values
retrieved should be treated only as rough estimates. However, as illustrated below, the com-
parison between this additional MC test and the default error estimates still presented a
reasonable test for the default errors and also revealed interesting systematic effects.

Figure 9 compares the original unperturbed curve and its default error bars (black curves,
and shaded gray region around it) to the the ten Gaussian-perturbed Monte Carlo (MC)
realizations (blue curves) and their mean (orange curve) for the 2.25-minute inductive
DAVE4VM helicity injection estimate (panel a), and for the 2.25-minute raw DAVE4VM
energy injection estimate (panel b). Panel a illustrates how the relative error estimate for
the injection rate gets lowered when the error is propagated from the injection rate to the
time-integrated total injection, the largest relative error of 170% in dHR/dt (Table 1) drop-
ping to 13% in the total injection HR(tX-flare). We also see that the ten MC realizations (blue
curves) have a very similar spread around the mean of the MC realizations (orange curve).
The standard deviation of the MC realizations with respect to the mean is 64% smaller than
the standard deviation derived from our default error bars at the time of the X-class flare,
corresponding to a relative error of 6% with respect to the MC mean. We get similar results
for the raw DAVE4VM estimate in panel b, although the error bars are significantly smaller.
As the injection curves for the additional MC realizations have no significant outliers, we
assume that it is safe to interpret the spread around the MC mean as an approximation of the
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Figure 9 Comparison between the unperturbed energy and helicity injection curves (black curves), their
default error bars (gray shaded region around the black curves), and the ten perturbed Monte Carlo realiza-
tions (blue curves), and the mean over the Monte Carlo realizations (orange curve). We have plotted also the
injection rates for the unperturbed case and the MC mean (black/orange dashed curves). Panel a shows the
results for the 2.25-minute inductive DAVE4VM estimate. Panel b contains the 2.25-minute raw DAVE4VM
energy injection estimates, where the smaller panels, with equal y-axis height [ergs], zooms into the time of
the X-class flare on 15 February 2011, 01:44 UT (vertical black dotted line) to better show the very small
� 1% default error bars (upper panel) and the spread of the MC realizations (lower panel).

true error despite the large statistical uncertainty arising from the small number of only ten
MC realizations.

We find similar results as above also for all the other time series in our study: the default
error bars and the spread of the MC realizations are mostly very similar, the absolute value
of the latter varying between 10% and 370% of the former with median of 60%.1

Despite differences between the MC spread and the default error we still find our de-
fault error bars performing reasonably well when their absolute values are compared to the
spread of the MC realizations around their mean, particularly when considering the inherent
uncertainties of the default error bars and the large statistical uncertainty in the spread of the
small number of additional MC realizations.

However, we also find significant systematic differences between the MC realizations and
the default estimate. This can be seen clearly in both Figures 9a and b; the MC realizations
produce consistently lower injections: 57% smaller for the 2.25-minute raw DAVE4VM
energy injection estimate and 19% smaller for the 2.25-minute inductive DAVE4VM helicity
injection estimate at the time of the X-class flare. The consistency of the underestimation
over all MC realizations implies that this is not a spurious result arising from the small
number of only ten realizations. These kinds of systematic changes are observed for all of
our data series, and they are mostly clearly beyond the noise-related error bars, and in some
cases (such as Figure 9) even beyond the method-related error bars of the DAVE4VM and
PDFI methods (see Section 3).

These consistent changes across the datasets show that all of our electric-field inver-
sion methods and consequently the energy and helicity injection estimates have systematic

1In the case of the rebinned 12-hour raw DAVE4VM helicity injection estimate, our default error estimate
failed completely, giving a relative error of 1100% for the injection rate, which then propagated to the helicity
injection giving a relative error � 100%. This spurious result arises from the very small helicity injection at
the representative frame for this particular series, which makes the μ in Equation 14 small, and thus the
σ̄dHR/dt unrealistically large. Due to this issue, error bars are omitted from the 12-hour rebinned helicity
injection estimate in Figure 6, lower panel.
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responses to the Gaussian perturbations of the input magnetogram data, and that these sys-
tematic differences are of a significant nature. In addition to the (unspecified) method-related
causes for the observed systematic responses, the Gaussian noise perturbations that we add
to the magnetograms (Section 2.6) may also introduce biases themselves, mostly because
their width is constant in time and space, and chosen to overestimate all temporal variations
in the true noise levels in the magnetic-field components (see Figure 2 of Kazachenko et al.,
2015). Consequently, when perturbing the magnetograms with Gaussian noise, we actually
increase the noise levels of the data. After recognizing this, it is not a surprise to find sys-
tematic effects, particularly effects where part of the signal seems to be lost as in Figures 9a
and b. Clearly a more comprehensive study of the effect of the noise is required so that more
realistic and time-dependent magnitudes for the perturbations are used with larger number
of MC realizations than what was used here. Until the cause behind these systematic effects
is unraveled, care should be taken when deriving energy and helicity injection estimates
from input datasets with variable noise levels, as the noise may have significant systematic
effects on the result.

Since the systematic effects in the injections only separate the unperturbed cases (black
curves in Figure 9) from the 10 – 20 perturbed MC realizations (blue curves in Figure 9), they
do not negate our original finding that the error propagated into the total time-integrated in-
jections is small, which was recovered both for the unperturbed estimate with its default error
bar and for the spread of the MC realizations around their mean. The following conclusion
that the noise-related variations in the total injections are actually often very small (< 1%
for the 12-minute estimates, which are most consistent with previous studies) clearly puts a
stronger emphasis on other sources of uncertainties when comparing different results. These
include the method-related errors within PDFI and DAVE4VM (Schuck, 2008; Kazachenko,
Fisher, and Welsch, 2014) already discussed in Section 3 as well as the effects of data pro-
cessing such as Dopplergram calibration (the effect of which was shown to be significant by
Kazachenko, Fisher, and Welsch, 2014) as well as tracking speed of the active region, noise
masking threshold, and the azimuth disambiguation in the magnetograms (which were all
shown to produce significant effects by Lumme, Pomoell, and Kilpua, 2017).

4.2. Inductive and Non-Inductive Contributions to the Energy and Helicity
Injections

Recently, there have been active discussions on the importance of the non-inductive elec-
tric field, and many studies highlight its crucial role in realistically producing magnetic
helicity and energy injections, and the related eruptive activity in the corona (Cheung and
DeRosa, 2012; Kazachenko, Fisher, and Welsch, 2014; Mackay, DeVore, and Antiochos,
2014; Lumme, Pomoell, and Kilpua, 2017; Pomoell, Lumme, and Kilpua, 2019). In this
section we quantify the mutual importance of the inductive (constrained by Faraday’s law
and input magnetograms) and non-inductive contributions (constrained by velocity estimates
and Ohm’s law) in our injection estimates.

Figures 10 and 11, upper panels, illustrate the significance of the 11.25-minute inductive
electric-field contribution to the energy and helicity injections (yellow curves) with the full
PDFI estimate (black curves) and inductive DAVE4VM estimate (purple curves). First, we
notice that the inductive contribution is significant for both inductive DAVE4VM and PDFI
energy injection estimates. At the time of the X-class flare the inductive contribution is 60%
of the former and 74% of the latter. The difference between the inductive contribution and
the total PDFI energy injection is almost within the maximal method-related error bars of
the method (25%; see Section 3.1). The large inductive contribution in the PDFI estimate
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Figure 10 Energy injection Em(t) (upper panel) and injection rate dEm/dt (lower panel) for the high-ca-
dence 2.25- and 11.25-minute cases derived only from the inductive electric-field component, as well as the
11.25-minute estimates derived using the PDFI, inductive DAVE4VM and PFI (PDFI estimate without the
Dopplergram contribution) methods. Combined method- and noise-related error estimates are plotted for the
11.25-minute PDFI estimate (black curve) at the time of the X-class flare (vertical black dashed dotted line).

Figure 11 Helicity injection HR(t) (upper panel) and injection rate dHR/dt (lower panel) for the high-ca-
dence 2.25- and 11.25-minute cases derived only from the inductive electric-field component, as well as the
11.25-minute estimates derived using the PDFI, inductive DAVE4VM, and PFI (PDFI estimate without the
Dopplergram contribution) methods. Combined method- and noise-related error estimates are plotted for the
11.25-minute PDFI estimate (black curve) at the time of the X-class flare (vertical black dashed dotted line).
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for NOAA AR 11158 is in contrast with the results of Kazachenko, Fisher, and Welsch
(2014), who found that the inductive component produced only 40% of the total PDFI energy
injection rate in the ANMHD synthetic data test. This highlights the differences between
the properties of the NOAA Active Region 11158 and the active-region-like system in the
ANMHD data, and it illustrates the need for testing the electric-field inversion methods in
other cases beside these two.

When it comes to the helicity injection (Figure 11, upper panel), the inductive component
has a significantly smaller contribution compared to the energy injection: at the time of the
X-class flare the inductive component constitutes only 22% and 26% of the 11.25-minute
inductive DAVE4VM and PDFI estimates, respectively. Again our results are in contrast to
those of Kazachenko, Fisher, and Welsch (2014), who found the inductive contribution in
the helicity injection rate of the ANMHD test to be 55%, twice as large as in our case.

Since the inductive contribution constitutes only 20 – 60% of the injection for the induc-
tive DAVE4VM method, the non-inductive component extracted from the raw DAVE4VM
electric field clearly introduces significant contributions (40 – 80%). This result is not di-
rectly obvious due to the fact that the method is based on finding a solution that is as induc-
tive as possible.

We plot the inductive contribution for both the 2.25- and 11.25-minute input data in Fig-
ures 10 and 11 (blue and yellow curves) to illustrate that increasing the cadence from 11.25
minutes to the highest 2.25-minute case has a very small effect (� 6%) on both injections.
Since increasing the cadence from 11.25 to 2.25 minutes does not cause any significant
changes in the inductive energy injection, the large increase in the DAVE4VM-based energy
injection estimates between the 11.25- and 2.25-minute cadences (Figures 4 and 7, upper
panels) must arise from contributions external to the inductive electric field. These contribu-
tions can be divided in two using a 2D Helmholtz decomposition of the horizontal electric
field (similar to Equation 7 of Schuck, 2008) (the vertical, z component of the electric field
does not contribute to the injections):

Eh = −∇φ × ẑ − ∇hψ = −∇ × φẑ − ∇hψ. (17)

We can immediately see that the curl-free part −∇hψ of this decomposition corresponds
to the horizontal components of the non-inductive electric field from Equation 7. The
divergence-free part −∇ × φẑ, on the other hand, defines the inductivity properties of the
electric field in the z direction:

(∇ × E) · ẑ = (∇ × Eh) · ẑ = −[∇ × (∇ × φẑ)
] · ẑ = ∇2

hφ

(
= −∂Bz

∂t

)
, (18)

where the last equality is fulfilled only if the electric field is perfectly inductive. This is the
case for the PDFI and inductive DAVE4VM estimates (Equations 7 and 11), for which the
divergence-free part corresponds to the horizontal inductive electric field −∇ × φẑ = Eh

I .
However, since the raw DAVE4VM estimate is poorly inductive (as discussed already in
Section 2.4.2 and as indicated by the metrics in Appendix B, Table 2), the divergence-free
component of the horizontal raw DAVE4VM electric field −∇ × φẑ is different from the
inductive electric field and does not fulfill the normal component of Faraday’s law in Equa-
tion 18.

Now we can compare the energy injection estimates derived from the divergence- and
curl-free parts of the horizontal DAVE4VM-based electric fields and how they respond
to variable cadence. First, the horizontal inductive electric field Eh

I , which is also the
divergence-free part of the inductive DAVE4VM electric field in Equation 17, produces only
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a minimal increase between the 11.25- and 2.25-minute estimates (3%, 2.2 × 1031 ergs, at
the time of the X-class flare). Since the 2.25-minute inductive DAVE4VM estimate is 16%
(1.8 × 1032 ergs) larger than the 11.25-minute case, almost all of this (90%, 1.6 × 1032 ergs)
must arise from the curl-free, non-inductive part of the inductive DAVE4VM electric field
−∇hψ (see Equation 11). The horizontal raw DAVE4VM electric field contains the same
curl-free part as the inductive DAVE4VM estimate −∇hψ , but the divergence-free part
−∇ × φẑ is different and poorly inductive. The 2.25-minute raw DAVE4VM energy in-
jection estimate is 52% (4.8 × 1032 ergs) larger than the 11.25-minute case. This means that
the curl- and divergence-free parts together introduce 4.8 × 1032 ergs difference between
the 2.25- and 11.25-minute raw DAVE4VM energy injections, whereas the curl-free part
alone introduces an increase of roughly 1.6 × 1032 ergs. The divergence-free part is thus re-
sponsible for most ((4.8 – 1.6 = 3.2) × 1032 ergs, 66%) of the difference. The increase from
the curl-free, non-inductive component alone (1.6 × 1032 ergs) would already be within the
combined method- and noise-related error of the 11.25-minute raw DAVE4VM estimate
(which is 2.2 × 1032 ergs, ≈ 24%), making the 2.25- and 11.25-minute estimates consis-
tent within these uncertainties. As indicated by Table 2 in Appendix B, the divergence-free
part of the 2.25-minute raw DAVE4VM electric field is clearly less inductive than that of
the 11.25-minute case, which means that the divergence-free component of the 2.25-minute
raw DAVE4VM electric field is clearly different from that of the 11.25-minute case. Thus,
it is not a surprise that these produce different energy injections.

In conclusion, this analysis shows that the majority of the observed difference between
the 2.25- and 11.25-minute raw DAVE4VM energy injection estimates arises from the
divergence-free part of the raw DAVE4VM electric field and its variable inductivity proper-
ties. The reason why the induction equation/Faraday’s law is fulfilled only in a least-squares
sense in DAVE4VM is that when ensuring perfect inductivity, also the changes related to the
noise are reproduced, which is deemed undesirable (Schuck, 2008; see also Section 2.4.2).
However, nothing guarantees that the electric field derived from such an approximate repro-
duction of Faraday’s law would evolve the magnetic field in a “mean field sense” so that
the large-scale evolution is reproduced without undesirable noise-related evolution. Instead,
the poorly inductive raw DAVE4VM electric field evolves the magnetic field further and
further away from the actual observations over time. Thus, we conclude that the changes
in the energy injection introduced by variable inductivity between the cadences have lit-
tle physically justifiable basis and arise only from the specific formulation of the method.
Consequently, we recommend ensuring the inductivity of the method not only when using
DAVE4VM-based electric fields to drive coronal simulations (as noted already by Schuck,
2008), but also when deriving the evolutionary energy and helicity injection estimates from
the DAVE4VM electric fields. This has not been taken into account in previous evolution-
ary estimates derived from DAVE4VM velocities (e.g. Liu and Schuck, 2012; Tziotziou,
Georgoulis, and Liu, 2013; Liu et al., 2016b; Lumme, Pomoell, and Kilpua, 2017; Bi et al.,
2018).

Another DAVE4VM-related finding that we made in Section 3 was that the 15-times
rebinned low-cadence inductive DAVE4VM estimates produced negative total helicity in-
jection for NOAA AR 11158 at the time of the X-class flare (Electronic Supplementary
Figure 17, lower panel), which is in contrast with all studies of the active region (see
Kazachenko et al., 2015, for review). As the helicity injection estimates derived only from
the inductive electric-field component were consistently positive, this signal must arise from
the non-inductive, DAVE4VM-based contribution. As we could not isolate any problematic
structures in the electric field or helicity flux density maps (see zenodo.org/record/2541961),
we conclude that the issue simply appears to be inherent to the inductive DAVE4VM es-
timate. It may arise from the DAVE4VM velocity inversion and/or from our method of

http://zenodo.org/record/2541961
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extracting the non-inductive contribution from this data, combined with the loss of infor-
mation in spatial rebinning and lowering the cadence. One particular issue in the inductive
DAVE4VM estimate is that, even though the raw DAVE4VM electric field fulfills the prop-
erty E · B = 0 of the ideal Ohm’s law exactly, the inductive DAVE4VM electric field does
not.

Finally, we have also plotted a modified version of the PDFI estimate: the PFI (PTD-
FLCT-Ideal) estimate to Figures 10 and 11 (purple curves), which lacks the contribution
from Dopplergrams. We can see that this estimate has similar trends in energy and helicity
injections as the PDFI estimate until 16 February 2011, ≈ 00:00 UT, after which the PFI
method continues to produce mostly positive injection rates, whereas the PDFI injection
rate becomes negative. This comparison reveals the Dopplergram contribution to be the
main cause of the negative helicity injection rate after 16 February 2011, 00:00 UT. The
Dopplergram contribution is also a likely reason for the differences between the DAVE4VM-
based and PDFI helicity injection estimates (Figure 5), as the former do not include the
Dopplergram data.

The significant difference in the sign of the helicity injection after 16 February 2011,
00:00 UT between PDFI and DAVE4VM-based estimates provides another strong distin-
guishing test for the methods. If the strong negative helicity injection rate of the PDFI
method is realistic, this would directly imply that the lack of Dopplergram contribution
in DAVE4VM is a serious issue, and the method should be updated to include Doppler-
grams (see Schuck, 2012, for work towards this direction). If the negative injection rate is
unphysical, this on the other hand would indicate an overemphasis or problematic formu-
lation of the Dopplergram contribution in the PDFI method. The Dopplergram contribution
is likely overemphasized in the emergence-driven ANMHD test used for validating and op-
timizing the PDFI method (Kazachenko, Fisher, and Welsch, 2014; see also Introduction,
Section 1). Moreover, Liu et al. (2014) reported that in a set of 28 active regions all had
dominant helicity injection arising from the shear component (i.e. the horizontal component
of the DAVE4VM velocity), not the vertical emergence, which we also reproduce for AR
11158. However, this result is derived using the raw DAVE4VM method, and without the
Dopplergram contribution. The Dopplergram contribution in the PDFI method might also be
contaminated by the horizontal penumbral Evershed flows. As these flows are thought to be
mostly parallel to the magnetic field (e.g. Borrero and Ichimoto, 2011), they should produce
no electric-field contribution in the ideal Ohm’s law, but they still can produce non-zero con-
tribution to the Dopplergram electric field in the PDFI method. The contamination appears
when the AR 11158 moves far from the disk center (central meridian passage on 14 February
2011, ≈ 02:00 UT) where the Dopplergram velocity V LOS becomes increasingly horizontal.
Consequently, the Evershed-flow contamination presents a possible reason for the strong
negative helicity injection rate in the PDFI estimates 16 February 2011, 00:00 UT onward.
An alternative version of the PDFI method that attempts to remove the Evershed-flow con-
tamination in the Dopplergram electric-field contribution has been developed (Fisher et al.,
2019), and the signal of the negative helicity injection rate has indeed disappeared in the
preliminary tests of this method. However, the alternative method performs worse than the
original one in the synthetic ANMHD tests, and also produces problematic artifacts when
applied to observational data. Thus, the approach still requires further development and test-
ing.

All in all, further tests with real and synthetic data are required for both PDFI and
DAVE4VM methods to better understand and constrain the issues of the methods discussed
above as well as the mutual discrepancies such as the opposite signs of the helicity injection
rates.
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4.3. General Discussion

To the best of our knowledge, the effect of cadence on the photospheric total energy and
helicity injections has not been studied before using real observational input. However, there
are certain simulation studies relevant for our work. For example, Leake, Linton, and Schuck
(2017) studied how well the SDO/HMI cadence of 12 minutes is capable of capturing an
idealized flux-emergence process in a coronal simulation driven by photospheric data. They
varied the effective cadence by changing the emergence rate and compared their data-driven
simulation to a ground-truth run of the emergence process, in which the whole emergence
from the upper convection zone to the corona was captured. Most of their simulations (seven
out of nine) followed a clear trend where increasing the effective cadence produced larger
total and free energy budgets in the simulation and producing smaller errors with respect to
the ground-truth run. This is similar to our results that show increasing or roughly constant
energy injections with increasing cadence.

Two of nine simulations of Leake, Linton, and Schuck (2017) produced exceptions to
the above trend resulting in significant overestimation of the free and also the total energy
budgets in the simulations (J. Leake, private communication, 2019), when compared to the
ground-truth run. They attributed this result to the undersampling of very rapidly evolving
photospheric magnetic features (Vh ≈ 20 km s−1 in one of these simulations), which intro-
duced spurious currents to the coronal volume, thus increasing the free and total energy
budgets. We mostly did not find any dramatic increases in our total energy injection esti-
mates (except for the 50% increase between the 2.25- and 11.25-minute raw DAVE4VM
estimates, which we, however, interpreted as a method-related effect; see Section 4.2). This
is not a surprise, as we did not detect horizontal velocities nearly as high as in the problem-
atic simulations of Leake, Linton, and Schuck (2017), our velocity estimates being typically
<1 km s−1. However, one should note that direct comparison between our results and the
findings of Leake, Linton, and Schuck (2017) is problematic due to the vast differences in
the active region settings (idealized emergence simulations vs. real observations) as well as
the fact that the photospheric injections cannot be compared directly to the coronal budgets.
The latter arises both from the fact that injected photospheric energy and helicity may be
ejected from the computational domain as well as from the limitations set by the mathemat-
ical formulation of the photospheric boundary condition (see, e.g., Kazachenko et al., 2015;
Pomoell, Lumme, and Kilpua, 2019, for further discussion).

Another simulation study relevant to our work was carried out by Weinzierl et al. (2016),
who ran a series of global, data-driven magnetofrictional simulations for a reasonably ac-
tive corona. They used synoptic Br magnetograms from the Air Force Data Assimilative
Photospheric Flux Transport (ADAPT) model as input, estimated the inductive electric field
consistent with Br evolution and the non-inductive electric field consistent with the large-
scale velocity field related to the solar differential rotation, and drove the simulation using
this total electric field. They varied the cadence of the input ADAPT maps between 2 and
48 hours, and compared the effect of driving cadence on the output of the simulations. They
reported reasonably consistent results for the cadences of 2 and 6 hours, lower cadences pro-
ducing notable differences between the simulations. We found the PDFI injection estimates
to be consistent within the uncertainties in a cadence range from 2.25 minutes to 2 hours.
Our two-hour limit is smaller but still of similar order of magnitude as the six-hour limit of
Weinzierl et al. (2016).

The consistency of our results in a certain cadence range, and the similar findings made
by Weinzierl et al. (2016), have interesting implications regarding the relevant time scales.
The fact that our PDFI energy and helicity injections are consistent (within uncertainties) in
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the range from two minutes to two hours implies that the photospheric processes (e.g. flux
emergence, cancellation, shearing motions) acting on time scales shorter than two hours
contribute very little to our estimates. This may arise from the actual small role of these
processes, or alternatively from the fact that the detection of these processes is below the
sensitivity of the SDO/HMI input data and our implementation of the PDFI electric-field
inversion scheme. One issue that may degrade the sensitivity of the PDFI method is the fact
that its perfectly inductive electric field reproduces all magnetogram noise in ∂B/∂t in Fara-
day’s law, unlike the raw DAVE4VM electric field, which has been designed to reproduce
the ∂B/∂t only in a least-squares sense (which, however, produced other issues, detailed in
Section 4.2). The consistency in the range from two minutes to two hours implies also that
the novel high-cadence 2.25-minute SDO/HMI data brings few new features to the PDFI
injection estimates when compared against the nominal 12-minute cadence, which in our
study is represented by the mock nominal cadence of 11.25 minutes. Further studies are
required to ascertain whether this consistency over various cadences can be reproduced also
in the context of data-driven simulations similarly to Weinzierl et al. (2016).

5. Summary and Conclusions

In this article we performed an extensive study on the effect of input-data cadence on the
total photospheric energy and helicity injections, derived from the electric-field inversion
results of three state-of-the-art methods: the PDFI method, and two methods based on the
DAVE4VM velocity-inversion approach. The first, the raw DAVE4VM method, follows pre-
vious work (e.g. Liu and Schuck, 2012) and derives the electric field directly from the output
velocity using the ideal Ohm’s law, whereas the second, the novel inductive DAVE4VM es-
timate, includes only the horizontal curl-free (non-inductive) part of the raw DAVE4VM
field, combined with the inductive field component from the PDFI electric field.

We produced six input magnetogram and Dopplergram data series for eruptive active
region NOAA AR 11158 by sampling the novel 2.25-minute high-cadence SDO/HMI data
(Sun et al., 2017) with cadence varying from 2.25 minutes to 24 hours. We also created one
dataset from the nominal 12-minute SDO/HMI data (Hoeksema et al., 2014), as well as an
additional four data series of cadences 2 – 24 hours where the data was rebinned by a factor
of 15 to constrain the effect of undersampling the typical photospheric motions at these
low cadences. We optimized the FLCT and DAVE4VM optical flow velocity inversion for
each cadence and spatial resolution, inverted the electric field using our three methods, and
estimated the respective energy and helicity injections. We also derived error bars for the
energy and helicity injections using a Monte Carlo approach and the noise characteristics of
the input magnetograms.

The errors arising from the magnetogram noise in the total time-integrated injection esti-
mates were often very small (<1%), in contrast to the previously reported values (≈ 10%),
which emphasizes the larger uncertainties arising from the inversion methods and data pro-
cessing. All injection estimates also produced systematic responses when the input magne-
tograms were manually perturbed with noise, which highlights the need for further tests on
the noise response of the methods in controlled environments and using larger number of
Monte Carlo statistics than used in this work. Moreover, care should be taken when compar-
ing the injection estimates from data products with variable noise characteristics.

Our three electric-field inversion methods produced consistent energy injection estimates
at the time of the strongest (X-class) flare of NOAA AR 11158 for the nominal 12-minute
HMI cadence (similarly to Kazachenko et al., 2015), but for helicity injections the methods
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differed significantly, slightly at the time of the flare, and increasingly after the flare. The
two DAVE4VM-based methods and PDFI method even gave opposite signs for the helicity
injection rate after the flare, and we showed that this difference arises from the Dopplergram
contribution in the PDFI method, a contribution not included in the DAVE4VM estimates.
This unresolved discrepancy highlights the need for further synthetic tests for both the PDFI
and DAVE4VM methods in more realistic settings than offered by the previously employed
ANMHD-based tests.

The injection estimates based on the PDFI electric-field inversion method turned out to be
the most robust against variable cadence, as the cadences from 2.25 minutes to 2.025 hours
produced all energy and helicity injections consistent within the uncertainties at the time of
the strongest X-class flare of NOAA AR 11158. This result suggests that the PDFI method
can be used flexibly with data products of variable cadence from other instruments beside
SDO/HMI (see Lagg et al., 2017, for a review), but also with the SDO/HMI data in the case
of data gaps, or when lowering the cadence in pursuit of saving computational resources.
This result also implies that the photospheric processes (e.g. flux emergence, cancellation,
and shearing motions) acting on time scales below two hours contribute little to the energy
and helicity injections, or alternatively that the detection of these contributions is below the
sensitivity of the SDO/HMI instrument and/or our implementation of the PDFI electric-field
inversion scheme. Furthermore, this result implies that the novel high-cadence 2.25-minute
SDO/HMI data brings few new features to the total injections when compared against the
nominal 12-minute cadence (in NOAA AR 11158).

The injection estimates based on the raw DAVE4VM estimates turned out to be very
sensitive to cadence: already the 2.25- and 11.25-minute cases differed significantly, par-
ticularly in the total energy injection where the 2.25-minute input produced roughly 50%
larger injection. For the lowest cadences (≥ two hours) the raw injection estimates lost the
injection signal altogether producing zero or negligibly small injections.

The inductive DAVE4VM estimate turned out to remedy most of the large difference
between the 2.25- and 11.25-minute raw DAVE4VM energy injection estimates proving that
the difference arises mostly from the poor and variable inductivity of the raw DAVE4VM
electric-field estimate. Based on this finding, we recommend correcting for the inductivity
when deriving the evolutionary energy and helicity injection estimates from the DAVE4VM
electric fields, a correction not included in the previous studies employing the method. The
loss of the raw DAVE4VM injection signal for the lowest cadences (≥ two hours) was also
visible in the inductive DAVE4VM estimate, for which the injections were clearly non-zero,
but the injections arose predominantly from the inductive component of the electric field,
while still clearly underestimating the high-cadence estimates.

The correction of the severe undersampling for the lowest cadences (≥ two hours), by re-
binning the input data by a factor of 15, clearly improved only the raw DAVE4VM injection
estimates, rebinned input data producing about half of the 11.25-minute raw DAVE4VM
reference estimates at the time of the X-class flare in NOAA AR 11158. On the other hand,
rebinned input only degraded the inductive DAVE4VM and PDFI estimates producing spu-
rious negative helicity injection results for the former and significant (up to 90%) loss of
helicity signal for the latter.

We mostly did not find dramatic increases in the total energy injections for any the ca-
dences or electric-field inversion methods, but instead found the energy injections to de-
crease as a function of decreasing cadence. As this also holds when our input data clearly
undersamples typical photospheric motions, we can conclude that our results show no evi-
dence for any spurious energy injections arising from the undersampling of the photospheric
motions, such as the ones detected by Leake, Linton, and Schuck (2017).
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Although most of the very low-cadence (≥ six hours) estimates considered in this study
clearly underestimated the injections, we still find that some of our estimates, such as the
low-cadence full resolution PDFI estimates, and 15-times rebinned DAVE4VM estimates,
are capable of approximating temporal trends of the high-cadence reference estimates rea-
sonably well, and even giving crude (under)estimates of the absolute values. For example,
the 12-hour full resolution PDFI estimate produced 50% and 74% of the 11.25-minute ref-
erence energy and helicity injections at the time of the X-class flare. This implies that even
cadences this low are capable of capturing some of the large-scale evolution in the NOAA
AR 11158 (possibly related to the fact that significant changes in the magnetic-field structure
of active regions occur over a time scale of several hours: Metcalf, 1994; Pevtsov, Canfield,
and Metcalf, 1994; Fisher et al., 1998).

Movies of all the magnetogram, Dopplergram, optical flow, electric field as well energy
and helicity flux maps for all of our data series can be found at zenodo.org/record/2541961.
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Appendix A: Technical Details Related to the Velocity and Electric-Field
Inversions

This appendix discusses the technical details related to the temporal and spatial discretiza-
tion of the velocity and electric-field inversion, as well as the updates made to the PDFI
method after the description of Kazachenko, Fisher, and Welsch (2014) and how we employ
the updated version.

http://zenodo.org/record/2541961
http://solarmuri.ssl.berkeley.edu/~fisher/public/software/FLCT/
http://solarmuri.ssl.berkeley.edu/~fisher/public/software/FLCT/
http://cgem.ssl.berkeley.edu/cgi-bin/cgem/PDFI_SS
http://ccmc.gsfc.nasa.gov/lwsrepository/index.php
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A.1 Temporal Discretization in the Velocity and Electric-Field Inversions

When specifying the input data for the FLCT and DAVE4VM velocity inversions we employ
a central difference scheme where magnetograms at times t and t ± �t are used to estimate
the velocity at time t so that the time derivatives ∂Bz/∂t and ∂B/∂t are both estimated from
B(t ±�t) using a central difference scheme, and the spatial derivatives ∂lBm (l ∈ {x, y} and
m ∈ {x, y, z}) required for DAVE4VM are computed from the central magnetogram B(t) at
time t (using five-point optimized derivatives, Jähne, 2004; Schuck, 2008; Liu and Schuck,
2012). The central difference scheme that employs three magnetograms at t and t ± �t

is preferred because it minimizes the effect of correlated noise between the estimates of
temporal and spatial derivatives (Welsch et al., 2007; Fermüller, Shulman, and Aloimonos,
2001), and also improves the final electric-field estimates through the “staggered-in-time”
approach as explained below.

As opposed to the velocity inversion, we employ a different time discretization in the
electric-field inversion, which we refer to as “staggered-in-time” approach (see also Fisher
et al., 2019). Essentially, we use consecutive magnetograms at time t and t +�t to estimate
∂B/∂t (t + 1/2�t) at time t + 1/2�t as follows:

∂B

∂t
(t + 1/2�t) = B(t + �t) − B(t)

�t
, (19)

where �t is the cadence of the input data series. Since the temporal derivative is estimated
at time t + 1/2�t , the electric-field inversion must be done at the same temporal position,
which requires (linear) interpolation (i.e. averaging of two consecutive frames) of all re-
quired quantities (B , V LOS, V FLCT

h , V DAVE4VM) to this same time before doing the inversion.
This approach is beneficial as it offers simplicity for the physical interpretation of the elec-
tric field: a perfectly inductive electric field E(t + 1/2�t) drives the magnetic field exactly
from observed value B(t) to the next B(t + �t), which does not happen for a standard
central difference discretization. Moreover, the approach partly mitigates some of the issues
caused by the noise, and the effect of other artifacts such as the spurious velocity spikes of
the FLCT inversion (Appendix A.2).

On the other hand, this choice of discretization, combined with the central difference
scheme used in the velocity inversion means that E(t +1/2�t) at time t +1/2�t depends on
the input magnetograms ranging from t −�t, t +2�t where the most distant magnetograms
are included via the central difference scheme of the optical flow estimates. Therefore, when
considering an electric field of cadence �t , some of the input data actually is collected from
an interval of duration 3�t .

A.2 Masking in the Velocity and Electric-Field Inversion

In order to remove the noise-dominated pixels from the output we employ a noise thresh-
old of |B| = 300 Mx cm−2 both in the DAVE4VM and FLCT velocity inversions. However,
as explained by Lumme, Pomoell, and Kilpua (2017), the input to DAVE4VM cannot be
masked, and therefore the masking of the DAVE4VM estimates is performed post facto
when computing the electric field (see below). For FLCT we employ the masking function-
ality implemented into the method itself by setting the thr parameter to 300 Mx cm−2, in
which case pixels where |Bz(t1) + Bz(t2)|/2 < thr are excluded from the analysis and the
output velocity is set to zero (Fisher and Welsch, 2008). This choice produces a stronger
masking condition for the FLCT inversion than the |B| = 300 Mx cm−2 threshold. We find
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this, however, to be beneficial due to the sensitivity of the FLCT to noise, resulting for ex-
ample in a larger number of spurious velocity spikes (where the velocity gets unreasonably
high, |V h| > 2 km s−1) with the lower choices of thr value.

When it comes to masking the noise-dominated pixels of the input data in the electric-
field inversion, we follow mostly the approach of Kazachenko et al. (2015) modified to the
updated spatial (Appendix A.3) and temporal (Section A.1) discretization of the inversion
procedures (see also Fisher et al., 2019). For masking the magnetic-field input data we use
a fixed masking threshold of |B| = 300 Mx cm−2, which is employed consistently with the
staggered-in-time temporal discretization. This means that the magnetic-field input B(t +
1/2�t), ∂B/∂t (t + 1/2�t) for the electric-field inversion at t + 1/2�t is masked in pixels
where either of the magnetograms participating in the inversion B(t), B(t + �t) is below
the threshold. Since in the PDFI method the input magnetic-field data is interpolated to
staggered grid positions (following the spatial discretization presented in Appendix A.3) the
mask is interpolated consistently so that the fractional values that arise from the interpolation
of the {0,1} mask are rounded up in the process. Except for the independent masking of
the FLCT method (see Section 2.3) other input data are not masked in any way, since the
masking of the magnetic-field data handles this implicitly in the application of the ideal
Ohm’s law.

A.3 Use of the PDFI_SS Software in this Study

We use the public version of the PDFI_SS (“PDFI_Spherical_Staggered”) software down-
loaded from cgem.ssl.berkeley.edu/cgi-bin/cgem/PDFI_SS/ on 30 August 2018, 16:43 GMT.
The software has several differences from the PDFI version described in the latest publica-
tion by Kazachenko, Fisher, and Welsch (2014). The differences are presented in detail by
Fisher et al. (2019), but we also briefly summarize them below:

• Instead of Cartesian geometry spherical coordinates are used consistently throughout the
electric-field inversion.

• All vectors are given in a local spherical basis (êr , êθ , êφ) corresponding to spherical
coordinates on the surface of the Sun (R�, θ,φ). We employ this coordinate system so
that the center of the input data patch is assumed to be at (θ,φ) = (90◦,0◦).

• All spatial derivatives are computed in the spherical coordinate system described above
(see Kazachenko, Fisher, and Welsch, 2014; Fisher et al., 2019).

• Before computing the electric field, the input data (i.e. the magnetic-field and plasma-
velocity estimates) are interpolated to a staggered grid (Yee, 1966; Fisher et al., 2019) in
two dimensions. As a short summary, the grid is defined so that the input data are specified
in the cell corners, the output horizontal electric-field components (Eθ ,Eφ) are given at
cell edges, staggered with respect to the cell centers, and the output radial component Er

is specified at the cell corners. When the software is used to compute the magnetic vector
potential, the output components (Ar,Aθ ,Aφ) are defined at the same grid positions as
the electric field.

• All spatial derivatives are computed consistently with the discretization of the Poisson
equations in the inversion, i.e. the fact that the five-point stencil assumes first order spatial
derivatives to be defined at half-grid points is taken into account (Kazachenko, Fisher, and
Welsch, 2014; Lumme, Pomoell, and Kilpua, 2017; Fisher et al., 2019). This ensures that
our electric-field estimate is exactly inductive with respect to the magnetic-field input
interpolated into the staggered grid positions (except for small numerical errors discussed
below), where the Br component is interpolated to cell centers.

http://cgem.ssl.berkeley.edu/cgi-bin/cgem/PDFI_SS/
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Since we wish to employ Cartesian instead of spherical geometry in our inversion (see
Section 2.4.1), the default inversion scheme in PDFI_SS must be modified. Following the
documentation in the PDFI_SS library we define a “pseudo-Cartesian” coordinate system
on the surface of a very large sphere with radius R′ � R�, where the latitudinal extent of
our patch is fixed to be very small, 10−4 radians:

Nθ�θ ′ = 10−4 rad ≈ 0.0057◦. (20)

Here Nθ is the number of cells in our patch in the latitudinal θ direction (for our 547 × 527
patch Nθ = 527 − 1 = 526), and �θ ′ is the grid spacing in the pseudo-Cartesian system.
Now we choose the radius of this large sphere so that the physical size of our original patch
as well as the pixel size (�y = R��θ = R��φ = �x) remain the same (for our patch with
�θ = �φ = 0.03◦, �y = �x ≈ 364 km). This gives a relation for the radius of the large
sphere R′:

Nθ�y ′ = Nθ�y, (21)

NθR
′�θ ′ = Nθ R��θ, (22)

R′ =
(

Nθ�θ

Nθ�θ ′

)
R�, (23)

R′ ≈ 2750R�. (24)

Using the pseudo-Cartesian coordinate system (R′, θ ′, φ′) when calling the PDFI_SS soft-
ware we preserve all the properties of the original input data patch – including the grid
spacing as well as the magnitudes and LOS vector directions of the Dopplergram veloc-
ities – but the spherical corrections in the spatial derivatives become vanishingly small
and all of the computations are approximately Cartesian. Finally, the output is transformed
as (Ex,Ey,Ez) = (Eφ,−Eθ,Er) following the definition of a local Cartesian basis from
Lumme, Pomoell, and Kilpua (2017).

The maximum error introduced into the inductivity of the output electric field by the
pseudo-Cartesian approximation is

max |(∇ × E)z − (−∂Bz/∂t)|
〈|∂Bz/∂t |〉 � 10−8, (25)

when compared to the average magnitude of |∂Bz/∂t | (excluding the masked noise-
dominated pixels: |B| < 300 Mx cm−2). This error is much smaller than the error introduced
by the FISHPACK Poisson solver (Swarztrauber and Sweet, 1975) in the PDFI software,
which removes the means of the source terms of the Poisson equations used in solving the
inductive electric field using poloidal–toroidal decomposition (see Kazachenko, Fisher, and
Welsch, 2014; Lumme, Pomoell, and Kilpua, 2017). This produces an additional error of
≈10−2 to Equation 25 above. Although it is possible to remove this additional error al-
together by using different boundary conditions for the solutions of the Poisson equations
(Fisher et al., 2019) or alternatively post facto electric-field corrections (see Fisher et al.,
2010; Lumme, Pomoell, and Kilpua, 2017), we decided not to employ either of these due
to the fact that the error produced by this issue remained small for the well-isolated NOAA
Active Region 11158 used in this study.
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Appendix B: Optimization of the Windowing Parameters of FLCT
and DAVE4VM

As discussed in Section 2.3, we optimize the windowing parameters of FLCT (σFLCT) and
DAVE4VM (square top hat side length) for each of our data series of variable cadence and
spatial resolution so that the output velocities fulfill the advection equation (Equation 5)
and the normal component of the induction equation (Equation 6), respectively, as well as
possible. More specifically, we measure the success in the reproduction of these equations
by the following metrics (also used by Schuck, 2008):

ρ slope in the fit: T = ρX + α, (26)

C Pearson correlation: C(T ,X), (27)

S Spearman rank order correlation: S(T ,X), (28)

where T = ∂Bz/∂t , the temporal derivative term in the advection/induction equation, and
X is the spatial derivative term, V h · ∇hBz in the advection equation (Equation 5) and ∇h ·
(BzV h − VzBh) in the induction equation (Equation 6). Since optimal reproduction of the
respective equations yields T = −X, the optimal metrics are thus ρ = C = S = −1. Though
we consider all of these metrics in our optimization procedures, we nonetheless aim to find a
single metric for FLCT and DAVE4VM optimizations each so that the metric works robustly
across all cadences and spatial resolutions.

For testing our optimization approach we employ synthetic magnetogram data from the
ANMHD simulation (Abbett et al., 2004; Welsch et al., 2007; Schuck, 2008; see also In-
troduction, Section 1), which has been used to test velocity-inversion routines. Since our
optimization algorithm for the DAVE4VM window size is essentially the same as the one
used by Schuck (2008), we were able to reproduce their optimization curves for metrics ρ,
C, and S above (see Schuck, 2008, Figure 1, upper right panel). σFLCT on the other hand
has been previously optimized to give the best consistency between the output FLCT ve-
locity and the horizontal components of the known ANMHD velocity field (Welsch et al.,
2007; Kazachenko, Fisher, and Welsch, 2014), which is fundamentally different from our
approach. When applied to ANMHD data our optimization algorithm gives the optimal
value σFLCT = 12 pixels from the Pearson and Spearman correlation metrics, whereas the
slope metric reaches no proper minimum in the optimization interval (see Figure 12, left
panel). The optimal value of 12 pixels is close to the optimal value of 15 pixels found
by Welsch et al. (2007) and Kazachenko, Fisher, and Welsch (2014), and the difference is
acceptable considering the flatness of the C(σFLCT) and S(σFLCT) curves near the values
σFLCT ∈ [10,15]. Based on this test, the correlation metrics appear to yield the best-defined
optimization for σFLCT, and in the further optimizations discussed below, we found that
the Pearson correlation gives the most robust results. Thus, hereafter we define the optimal
σFLCT to be at the minimum of the Pearson correlation metric (Equation 27) of the advection
equation.

After validating the optimization algorithm against previous ANMHD tests, we moved
on to applying the method to real magnetogram observations. We employ a representative
frame closest to the central meridian passage of our NOAA AR 11158 series (14 Febru-
ary 2011, 01:48 UT) for the optimization, which is chosen for its good representativeness
of the active region properties (see Section 4.1 for details). As illustrated by Figure 13
the FLCT optimization for 12-minute data input gives a minimum Pearson correlation at
σFLCT = 4 pixels (whereas the slope and Spearman correlation metrics yield optimal σFLCT
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Figure 12 Optimization of σFLCT using the synthetic magnetogram data from ANMHD simulation. Left
panel shows the optimization curves for the metrics slope, Pearson and Spearman correlation, where the
optimal σFLCT = 12 pixel at the minimum of Pearson correlation has been indicated by the vertical black
line. Right panel shows the scatter plot between the two terms of the advection equation for the optimal
σFLCT = 12 pixels. The red dashed line shows the y = −x line V h · ∇hBz = −∂Bz/∂t , on which the points
should fall in the case of perfect reproduction of the advection equation.

Figure 13 Optimization of σFLCT applied to a representative frame at 14 February 2011, 01:48 UT in
our 12-minute vector magnetogram series. Left panel shows the optimization curves for the metrics slope,
Pearson and Spearman correlation, where the optimal σFLCT = 4 pixel at the minimum of Pearson correlation
has been indicated by the vertical dashed line. Right panel shows the scatter plot between the two terms
of the advection equation for the optimal σFLCT = 4 pixels. The red dashed line shows the y = −x line
V h · ∇hBz = −∂Bz/∂t , on which the points should fall in the case of perfect reproduction of the advection
equation.

of 4 and 3 pixels, respectively). This is similar to the σFLCT = 5 pixels used by Kazachenko
et al. (2015). Unlike the ANHMD test case where all metrics were very good (optimally
ρ,C,S = −0.81,−0.97,−0.92; see Figure 12, right panel) for real data input the optimal
correlations degrade to ≈ −0.8 and the slope drops to −0.46. This is most likely a noise-
related effect, since real magnetogram input is clearly more noise-dominated both spatially
and temporally than the extremely smooth ANMHD input (see, e.g., Welsch et al., 2007, for
further details on the ANMHD data properties). Table 2 lists the σFLCT optimization results
for all cadences and spatial resolutions considered in this study.

Unlike the σFLCT optimization, the DAVE4VM window-size case produces clearly more
ambiguous results both for ANMHD (see Schuck, 2008, Figure 1, upper right panel) and real
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Table 2 Optimization results for σFLCT and DAVE4VM window size over all cadences and spatial resolu-
tions considered in this study.

Dataset
cadence

Opt. FLCT Opt. DAVEVM

σFLCT [ρCS ] Window size [ρSC ]

[pix] at opt. σFLCT [pix] at opt. w.size

2.25 min 2 −0.29–0.76−0.74 19 −0.26–0.36−0.39

11.25 min 3 −0.44–0.81−0.79 19 −0.46–0.52−0.61

12 mina 4 −0.46–0.83−0.79 19 −0.52–0.56−0.65

2.025 h 26 −0.60–0.59−0.58 29 −0.36–0.52−0.58

– (rebin 15×) 30b −0.20-0.75−0.80 75b −0.55–0.66−0.69

6 h 44 −0.47–0.36−0.37 45 −0.17–0.40−0.44

– (rebin 15×) 45b −0.37–0.77−0.67 75b −0.51–0.68−0.74

12 h 41 −0.64–0.32−0.35 39 −0.18–0.41−0.43

– (rebin 15×) 45b −0.48–0.74−0.63 105b −0.52–0.68−0.77

24 h 27 −0.16–0.08−0.11 39 −0.12–0.28−0.34

– (rebin 15×) 30b −0.26–0.44−0.41 165b −0.17–0.50−0.41

aDifferent magnetogram data source; see Sections 2.1 and 2.2 for details.

bIn full resolution units, i.e. 15 times the value in rebinned pixels.

observations. As illustrated by the left panel of Figure 14, all metrics have a clear minimum
for the 12-minute magnetogram input data, but the minima of the correlation and slope
metrics are very different (≈ 19 and 5 pixels, respectively). Moreover, as already noted by
Schuck (2008), the slope metric degrades as a function of the window size, whereas the
correlation metrics continue to improve (until saturating at ≈ 19 pixels in our case). Due
to the inconsistency between the evolution of the metrics, Schuck (2008) suggests that the
optimal value is chosen as a balance between the degrading slope metric and improving
correlation metrics.

Based on a survey covering all optimization curves over all cadences and spatial resolu-
tions, we have chosen the optimal DAVE4VM window size to be the one where the Spear-
man correlation reaches a local minimum with the smallest window size. This approach
turned out to be robust for all cadences and spatial resolutions used in this study. More
specifically, we find that: i) a local minimum always existed and it was also often the global
minimum, thus emphasizing the uniqueness of the solution, and ii) the optimal window size
coincided well with the idea of Schuck (2008) that a balance between the degrading slope
and improving correlation metrics should be found. Using this method we obtained an opti-
mal value of 19 pixels for the 12-minute magnetogram input, which is consistent with Liu
and Schuck (2012) and Lumme, Pomoell, and Kilpua (2017).

As shown by Figures 13 and 14, and further by Table 2, the values of the optimization
metrics are in most cases clearly poorer for the DAVE4VM optimization than for the σFLCT

case. This emphasizes the issue of poor inductiveness of the raw DAVE4VM electric field
already discussed in Section 2.4.2 (as perfect inductivity would mean also perfect metrics
ρ = C = S = −1). The metrics and inductivity are also clearly worse for real magnetogram
input than for the ANMHD data input, e.g. S = −0.56 for the 12-minute input, as opposed
to optimal S ≈ −0.8 for the ANMHD input (Schuck, 2008, Figure 1, upper right panel).
This indicates that the larger spatial and temporal noise and higher spatial structuring of the
real magnetogram data compared to the very smooth ANMHD data are a likely cause for
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Figure 14 Optimization of the DAVE4VM window size using vector magnetogram input from our
12-minute data series. Left panel shows the optimization curves for the slope, Pearson and Spearman cor-
relation metrics with the optimal window size (i.e. the local minimum of Spearman correlation with the
smallest window size) indicated by the vertical dashed line. Right panel shows the scatter plot between the
two terms of the advection equation for the optimal window size of 19 pixels. The red dashed line shows
the y = −x line ∇h · (BzV h − VzBh) = −∂Bz/∂t , on which the points should fall in the case of perfect
reproduction of the induction equation.

the degradation in the inductivity. As shown by the last column of Table 2 the inductivity
also changes as a function of cadence, e.g. the optimal Spearman correlation increases from
−0.52 to −0.36 between the mock nominal cadence of 11.25 minutes and highest cadence
of 2.25 minutes. This issue is further discussed in Section 4.2.

Figure 15 (solid curves) illustrates the results of the optimization scheme described above
for one of the lowest cadences of two hours. As indicated by the figure and further by
Table 2 most of the metrics become clearly worse at optimal σFLCT/window size for the
lowest cadences ≥ two hours. For example, the optimal Pearson correlation in the FLCT
optimization drops from ≈ −0.8 to −0.59 –−0.08 between the 12-minute and the ≥ two-
hour cadences. This degradation in the quality of the optimization as a function of cadence is
not a surprise considering the fact that when using the lowest cadences our central difference
approximation for the advection/induction equation compares magnetograms 2�t ∈ [4,48]
hours apart. FLCT tracking recovers shifts of tens of pixels over these intervals, and such
large shifts make our discretization of the advection/induction equation an extremely poor
approximation; optimally the shifts should be of subpixel magnitude (e.g. Welsch et al.,
2012). As already discussed in Section 2.2, we attempt to remove this issue by creating an
additional rebinned vector-magnetogram time series for the lowest cadences (≥ two hours)
with 15 times lower spatial resolution. For this dataset the largest FLCT-recovered shifts
over 2�t ∈ [4,48] hours drop below two–three pixels and most of the shifts are less than
one pixel. Dashed lines in Figure 15 show the optimization curves for 15-times rebinned
two-hour input (so that the σFLCT and DAVE4VM window size are scaled to the original full
resolution units). We can see that the optimal σFLCT values are very similar between the full-
resolution and rebinned cases when the rebinned values are scaled to full resolution units,
and consistent well within the σFLCT grid spacing error of the rebinned case (0.5 × 15 = 7.5
pixels). This same result is recovered also for other cadences as illustrated by the second
column of Table 2. Moreover, the rebinning also introduces a clear improvement in the
(C,S) metrics at the optimal σFLCT values.

However, when it comes to the DAVE4VM window size, the optimization results are
clearly not consistent between the full resolution and the 15-times rebinned cases, where the
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Figure 15 Optimization of σFLCT (Panel a) and the DAVE4VM window size (Panel b) using vector magne-
togram input from our 2.025-hour data series with full spatial resolution (solid lines) and 15-times rebinned
input data (dashed lines). The optimal values for each are indicated by gray vertical lines. Note that σFLCT
and DAVE4VM window size in the rebinned case are scaled to the full-resolution units.

latter is strongly biased towards larger window sizes (Figure 15b and Table 2, last column).
This is expected considering the fact that the smallest possible window size in the rebinned
case is 3 rebinned pixels, and thus 45 full resolution pixels. Furthermore, since we consider
only symmetric windows of odd window size in pixels, the next value in the grid is already
5 rebinned and 75 full-resolution pixels. Since we employ the five-point least-squares opti-
mized derivatives in the spatial discretization of Equation 6 (Jähne, 2004; Schuck, 2008; Liu
and Schuck, 2012), and thus our estimates for the spatial derivatives at each pixel employ
points over a 5 × 5 pixel area, it is also expected that the optimal results are ≥ 5 rebinned
pixels (≥ 75 pixels in full resolution). Despite this issue, we find that, similarly to the FLCT
case, the metrics at optimal window sizes do improve after the rebinning (Figure 15 and
Table 2), as expected due to the markedly better discrete approximation of the induction
equation.
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