2,333 research outputs found

    Compensatory physical education for motor impaired approved school boys.

    Get PDF
    Abstract Not Provided

    Hydrogen solubility in zirconium intermetallic second phase particles

    Full text link
    The enthalpies of solution of H in Zr binary intermetallic compounds formed with Cu, Cr, Fe, Mo, Ni, Nb, Sn and V were calculated by means of density functional theory simulations and compared to that of H in {\alpha}-Zr. It is predicted that all Zr-rich phases (formed with Cu, Fe, Ni and Sn), and those phases formed with Nb and V, offer lower energy, more stable sites for H than {\alpha}-Zr. Conversely, Mo and Cr containing phases do not provide preferential solution sites for H. In all cases the most stable site for H are those that offer the highest coordination fraction of Zr atoms. Often these are four Zr tetrahedra but not always. Implications with respect to H-trapping properties of commonly observed ternary phases such as Zr(Cr,Fe)2, Zr2(Fe,Ni) and Zr(Nb,Fe)2 are also discussed.Comment: manuscript accepted for publication in Journal of Nuclear Materials (2013

    Single polymer dynamics: coil-stretch transition in a random flow

    Full text link
    By quantitative studies of statistics of polymer stretching in a random flow and of a flow field we demonstrate that the stretching of polymer molecules in a 3D random flow occurs rather sharply via the coil-stretch transition at the value of the criterion close to theoretically predicted.Comment: 4 pages, 5 figure

    On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body

    Full text link
    We investigate a hierarchy of eddy-viscosity terms in POD Galerkin models to account for a large fraction of unresolved fluctuation energy. These Galerkin methods are applied to Large Eddy Simulation data for a flow around the vehicle-like bluff body call Ahmed body. This flow has three challenges for any reduced-order model: a high Reynolds number, coherent structures with broadband frequency dynamics, and meta-stable asymmetric base flow states. The Galerkin models are found to be most accurate with modal eddy viscosities as proposed by Rempfer & Fasel (1994). Robustness of the model solution with respect to initial conditions, eddy viscosity values and model order is only achieved for state-dependent eddy viscosities as proposed by Noack, Morzynski & Tadmor (2011). Only the POD system with state-dependent modal eddy viscosities can address all challenges of the flow characteristics. All parameters are analytically derived from the Navier-Stokes based balance equations with the available data. We arrive at simple general guidelines for robust and accurate POD models which can be expected to hold for a large class of turbulent flows.Comment: Submitted to the Journal of Fluid Mechanic

    Exploring the job satisfaction and organisational commitment of employees in the information technology environment

    Get PDF
    9The objective of the study was to explore the relationship between employees’ job satisfaction (as measured by the Job Satisfaction Survey) and organisational commitment (as measured on the Organisational Commitment Scale). A cross-sectional survey was conducted on a convenience sample of 86 employees at four information technology companies in South Africa. Correlational and stepwise regression analyses revealed a number of signifi cant relationships between the two variables. The fi ndings add newknowledge that can be used to improve organisational practices for the retention of valuable staff members in the information technology environment

    Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows

    Get PDF
    Nontrivial steady flows have recently been found that capture the main structures of the turbulent buffer layer. We study the effects of polymer addition on these "exact coherent states" (ECS) in plane Couette flow. Despite the simplicity of the ECS flows, these effects closely mirror those observed experimentally: Structures shift to larger length scales, wall-normal fluctuations are suppressed while streamwise ones are enhanced, and drag is reduced. The mechanism underlying these effects is elucidated. These results suggest that the ECS are closely related to buffer layer turbulence.Comment: 5 pages, 3 figures, published version, Phys. Rev. Lett. 89, 208301 (2002

    Small scale statistics of viscoelastic turbulence

    Full text link
    The small scale statistics of homogeneous isotropic turbulence of dilute polymer solutions is investigated by means of direct numerical simulations of a simplified viscoelastic fluid model. It is found that polymers only partially suppress the turbulent cascade below the Lumley scale, leaving a remnant energy flux even for large elasticity. As a consequence, fluid acceleration in viscoelastic flows is reduced with respect to Newtonian turbulence, whereas its rescaled probability density is left unchanged. At large scales the velocity field is found to be unaffected by the presence of polymers.Comment: 7 pages, 4 figure

    The Scaling Structure of the Velocity Statistics in Atmospheric Boundary Layer

    Full text link
    The statistical objects characterizing turbulence in real turbulent flows differ from those of the ideal homogeneous isotropic model.They containcontributions from various 2d and 3d aspects, and from the superposition ofinhomogeneous and anisotropic contributions. We employ the recently introduceddecomposition of statistical tensor objects into irreducible representations of theSO(3) symmetry group (characterized by jj and mm indices), to disentangle someof these contributions, separating the universal and the asymptotic from the specific aspects of the flow. The different jj contributions transform differently under rotations and so form a complete basis in which to represent the tensor objects under study. The experimental data arerecorded with hot-wire probes placed at various heights in the atmospheric surfacelayer. Time series data from single probes and from pairs of probes are analyzed to compute the amplitudes and exponents of different contributions to the second order statistical objects characterized by j=0j=0, j=1j=1 and j=2j=2. The analysis shows the need to make a careful distinction between long-lived quasi 2d turbulent motions (close to the ground) and relatively short-lived 3d motions. We demonstrate that the leading scaling exponents in the three leading sectors (j=0,1,2j = 0, 1, 2) appear to be different butuniversal, independent of the positions of the probe, and the large scaleproperties. The measured values of the exponent are ζ2(j=0)=0.68±0.01\zeta^{(j=0)}_2=0.68 \pm 0.01, ζ2(j=1)=1.0±0.15\zeta^{(j=1)}_2=1.0\pm 0.15 and ζ2(j=2)=1.38±0.10\zeta^{(j=2)}_2=1.38 \pm 0.10. We present theoretical arguments for the values of these exponents usingthe Clebsch representation of the Euler equations; neglecting anomalous corrections, the values obtained are 2/3, 1 and 4/3 respectively.Comment: PRE, submitted. RevTex, 38 pages, 8 figures included . Online (HTML) version of this paper is avaliable at http://lvov.weizmann.ac.il
    • …
    corecore