194 research outputs found

    Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters

    Get PDF
    The diversity of lichens, especially crustose species, in continental Antarctica is still poorly known. To overcome difficulties with the morphology based species delimitations in these groups, we employed molecular data (nuclear ITS and mitochondrial SSU rDNA sequences) to test species boundaries within the genus Lecidea. Sampling was done along a north–south transect at five different areas in the Ross Sea region (Cape Hallett, Botany Bay to Mount Suess, Taylor Valley, Darwin Area and Mount Kyffin). A total of 153 specimens were collected from 13 localities. Phylogenetic analyses also include specimens from other regions in Antarctica and non-Antarctic areas. Maximum parsimony, maximum likelihood and Bayesian analyses agreed in placing the samples from continental Antarctica into four major groups. Based on this phylogenetic estimate, we restudied the micromorphology and secondary chemistry of these four clades to evaluate the use of these characters as phylogenetic discriminators. These clades are identified as the following species Lecidea cancriformis, L. andersonii as well as the new species L. polypycnidophora Ruprecht & Türk sp. nov. and another previously unnamed clade of uncertain status, referred to as Lecidea sp. (L. UCR1)

    Species recognition and phylogeny of Thelotrema species in Australia (Ostropales, Ascomycota)

    Get PDF
    Species circumscriptions based on morphological data are difficult in crustose lichens with limited characters as they often show remarkable variability. An example is the genus Thelotrema s.str., a speciose genus of mostly tropical lichens. Morphological studies on Australian Thelotrema spp. were accompanied by a phylogenetic analysis of mt SSU rDNA sequence data of 19 species, including 25 newly obtained sequences. We performed maximum parsimony and Bayesian phylogenetic analyses of 50 samples, representing 25 species. Our results indicate that more species need to be accepted in Thelotrema than previously thought. Subtle morphological differences were found to be associated with independent lineages in the phylogenetic trees. Furthermore, monophyly of Thelotrema s.str. is strongly supported. On the basis of the corroboration of morphological evidence by molecular data, the new species Thelotrema capetribulense Mangold, T. crespoae Mangold, Lumbsch & Elix, T. oleosum Mangold, and T. pseudosubtile Mangold are described. The new combinations Chapsa phlyctidioides (Müll.Arg.) Mangold and Thelotrema defossum (Müll.Arg.) Mangold are proposed

    Diversidad de especies de Xanthoparmelia (Parmeliaceae) en la vegetación de matorrales xerofíticos mexicanos, evidenciada por datos moleculares, morfológicos y químicos

    Get PDF
    The genus Xanthoparmelia is the largest genus of lichen- forming fungi with about 800 species worldwide. Xanthoparmelia is also common in the deserts of central Mexico, but only a few molecular studies exist on its species’ diversity in this region. In this study, we sampled 38 Xanthoparmelia species from around the world including species from the xerophytic scrubs of central Mexico to assess the diversity using an integrative approach. Molecular phylogenetic analyses were performed using a combination of the ITS, mtSSU and nuLSU genetic markers. We evaluated our phylogenetic results in a context of traditional morphological and chemical characters. The combined evidence of molecular, morphological, and chemical data identified a total of 18 Xanthoparmelia species-level lineages occurring in central Mexico. However, numerous traditionally circumscribed species did not form monophyletic groups in the molecular phylogenetic reconstructions. This conflict indicates that taxonomy and species delimitation in the genus Xanthoparmelia requires revision and emphasizes the importance of molecular evidence for more robust species delimitations in this genus.Xanthoparmelia es el género más grande de hongos liquenizados, con alrededor de 800 especies en todo el mundo. Xanthoparmelia es común en los desiertos del centro de México, pero existen pocos estudios moleculares sobre la diversidad de especies en esta región. En este estudio, muestreamos 38 especies de Xanthoparmelia de diferentes partes del mundo, incluidas especies de los matorrales xerófilos del centro de México, para evaluar la diversidad usando una aproximación integrativa. Los análisis filogenéticos moleculares se realizaron combinando los marcadores genéticos ITS, mtSSU y nuLSU. Además, evaluamos nuestros resultados filogenéticos en un contexto de caracteres morfológicos y químicos usados en la taxonomía tradicional. Teniendo en cuenta las evidencias obtenidas a partir de caracteres moleculares, morfológicos y químicos se identificaron un total de 18 linajes de Xanthoparmelia con categoría de especie que aparecen en el centro de México. Sin embargo, muchas especies tradicionalmente circunscritas no formaron grupos monofiléticos. Este conflicto indica que la taxonomía y delimitación de especies en el género Xanthoparmelia requiere revisión y enfatiza la importancia de los datos moleculares para una delimitación más robusta de especies en este género

    Origin and Diversification of Major Clades in Parmelioid Lichens (Parmeliaceae, Ascomycota) during the Paleogene Inferred by Bayesian Analysis

    Get PDF
    There is a long-standing debate on the extent of vicariance and long-distance dispersal events to explain the current distribution of organisms, especially in those with small diaspores potentially prone to long-distance dispersal. Age estimates of clades play a crucial role in evaluating the impact of these processes. The aim of this study is to understand the evolutionary history of the largest clade of macrolichens, the parmelioid lichens (Parmeliaceae, Lecanoromycetes, Ascomycota) by dating the origin of the group and its major lineages. They have a worldwide distribution with centers of distribution in the Neo- and Paleotropics, and semi-arid subtropical regions of the Southern Hemisphere. Phylogenetic analyses were performed using DNA sequences of nuLSU and mtSSU rDNA, and the protein-coding RPB1 gene. The three DNA regions had different evolutionary rates: RPB1 gave a rate two to four times higher than nuLSU and mtSSU. Divergence times of the major clades were estimated with partitioned BEAST analyses allowing different rates for each DNA region and using a relaxed clock model. Three calibrations points were used to date the tree: an inferred age at the stem of Lecanoromycetes, and two dated fossils: Parmelia in the parmelioid group, and Alectoria. Palaeoclimatic conditions and the palaeogeological area cladogram were compared to the dated phylogeny of parmelioid. The parmelioid group diversified around the K/T boundary, and the major clades diverged during the Eocene and Oligocene. The radiation of the genera occurred through globally changing climatic condition of the early Oligocene, Miocene and early Pliocene. The estimated divergence times are consistent with long-distance dispersal events being the major factor to explain the biogeographical distribution patterns of Southern Hemisphere parmelioids, especially for Africa-Australia disjunctions, because the sequential break-up of Gondwana started much earlier than the origin of these clades. However, our data cannot reject vicariance to explain South America-Australia disjunctions

    Pleistocene Speciation in North American Lichenized Fungi and the Impact of Alternative Species Circumscriptions and Rates of Molecular Evolution on Divergence Estimates

    Get PDF
    Pleistocene climatic fluctuations influenced patterns of genetic variation and promoted speciation across a wide range of species groups. Lichens are commonly found in habitats that were directly impacted by glacial cycles; however, the role of Pleistocene climate in driving speciation in most lichen symbionts remains unclear. This uncertainty is due in part to limitations in our ability to accurately recognize independently evolving lichen-forming fungal lineages and a lack of relevant fossil calibrations. Using a coalescent-based species tree approach, we estimated divergence times for two sister clades in the genus Xanthoparmelia (Parmeliaceae) restricted to western North America. We assessed the influence of two different species circumscription scenarios and various locus-specific rates of molecular evolution on divergence estimates. Species circumscriptions were validated using the program BP&P. although speciation was generally supported in both scenarios, divergence times differed between traditional species circumscriptions and those based on genetic data, with more recent estimates resulting from the former. Similarly, rates of evolution for different loci resulted in variable divergence time estimates. However, our results unambiguously indicate that diversification in the sampled Xanthoparmelia clades occurred during the Pleistocene. Our study highlights the potential impact of ambiguous species circumscriptions and uncertain rates of molecular evolution on estimating divergence times within a multilocus species tree frameworkPeer reviewe

    Neoprotoparmelia gen. nov. and Maronina (Lecanorales, Protoparmelioideae): species description and generic delimitation using DNA barcodes and phenotypical characters

    Get PDF
    Multilocus phylogenetic studies revealed a high level of cryptic diversity within the lichen-forming fungal genus Maronina (Protoparmelioideae, Parmeliaceae). Coalescent-based species delimitation suggested that most of the cryptic molecular lineages warranted recognition as separate species. Here we study the morphology and chemistry of these taxa and formally describe eight new species based on phenotypical and molecular characters. Further, we evaluate the use of ITS rDNA as a DNA barcode for identifying species in this genus. For the first time, we obtained an ITS sequence of Maronina australiensis, the type species of the genus and showed that it is phylogenetically not closely related to species currently placed in Maronina or Protoparmelia. We assembled a dataset of 66 ITS sequences to assess the interspecies genetic distances amongst the twelve Maronina species using ITS as DNA barcode. We found that Maronina and Protoparmelia form a supported monophyletic group whereas M. australiensis is sister to both. We therefore propose a new genus Neoprotoparmelia to accommodate the tropical-subtropical species within Protoparmelioideae, with Neoprotoparmelia corallifera as the type, N. amerisidiata, N. australisidiata, N. brasilisidiata, N. capensis, N. crassa, N. pauli, N. plurisporibadia and N. siamisidiata as new species and N. capitata, N. isidiata, N. multifera, N. orientalis and N. pulchra as new proposed combinations. We provide a key to Neoprotoparmelia and confirm the use of ITS for accurately identifying species in this group

    Multiple, distinct intercontinental lineages but isolation of Australian populations in a cosmopolitan lichen-forming Fungal Taxon, Psora decipiens (Psoraceae, Ascomycota)

    Get PDF
    Multiple drivers shape the spatial distribution of species, including dispersal capacity, niche incumbency, climate variability, orographic barriers, and plate tectonics. However, biogeographic patterns of fungi commonly do not fit conventional expectations based on studies of animals and plants. Fungi, in general, are known to occur across exceedingly broad, intercontinental distributions, including some important components of biological soil crust communities (BSCs). However, molecular data often reveal unexpected biogeographic patterns in lichenized fungal species that are assumed to have cosmopolitan distributions. The lichen-forming fungal species Psora decipiens is found on all continents, except Antarctica and occurs in BSCs across diverse habitats, ranging from hot, arid deserts to alpine habitats. In order to better understand factors that shape population structure in cosmopolitan lichen-forming fungal species, we investigated biogeographic patterns in the cosmopolitan taxon P. decipiens, along with the closely related taxa P. crenata and P. saviczii. We generated a multi-locus sequence dataset based on a worldwide sampling of these taxa in order to reconstruct evolutionary relationships and explore phylogeographic patterns. Both P. crenata and P. decipiens were not recovered as monophyletic; and P. saviczii specimens were recovered as a monophyletic clade closely related to a number of lineages comprised of specimens representing P. decipiens. Striking phylogeographic patterns were observed for P. crenata, with populations from distinct geographic regions belonging to well-separated, monophyletic lineages. South African populations of P. crenata were further divided into well-supported sub-clades. While well-supported phylogenetic substructure was also observed for the nominal taxon P. decipiens, nearly all lineages were comprised of specimens collected from intercontinental populations. However, all Australian specimens representing P. decipiens were recovered within a single well-supported monophyletic clade consisting solely of Australian samples. Our study supports up to 10 candidate species-level lineages in P. decipiens, based on genealogical concordance and coalescent-based species delimitation analyses. Our results support the general pattern of the biogeographic isolation of lichen-forming fungal populations in Australia, even in cases where closely related congeners have documented intercontinental distributions. Our study has important implications for understanding factors influencing diversification and distributions of lichens associated with BSC.This research was funded, in part, by a start-up grant from BYU College of Life Sciences to SL; MarW’s and MatW’s work was done within the European Soil Crust Project SCIN (Büdel et al., 2014) funded by the ERA-Net BiodivERsA program, with the national funder The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS)
    corecore