4 research outputs found

    Software Development Standard Processes (SDSP)

    Get PDF
    A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden

    EGFR mutant-specific immunohistochemistry has high specificity and sensitivity for detecting targeted activating EGFR mutations in lung adenocarcinoma

    No full text
    Aim We assessed the diagnostic accuracy of epidermal growth factor receptor (EGFR) mutant-specific antibodies for detecting two common activating EGFR mutations. Methods Immunohistochemical expression of mutation-specific antibodies against EGFR exon 19 deletion E746-A750 ((c.2235-2249del15 or c.2236-2250del15, p. Glu746-Ala750del) and exon 21 L858R point mutation (c.2573T>G, p.Leu858Arg) were assessed in a cohort of 204 resected early stage node negative lung adenocarcinomas, and protein expression was compared with DNA analysis results from mass spectrometry analysis. Results Of seven cases with L858R point mutation, six were positive by immunohistochemistry (IHC). There were three false positive cases using L858R IHC (sensitivity 85.7%, specificity 98.5%, positive predictive value 66.7%, negative predictive value 99.5%). All seven E746-A750 exon 19 deletions identified by mutation analysis were positive by IHC. Four additional cases were positive for exon 19 IHC but negative by mutation analysis. The sensitivity of exon 19 IHC for E746-A750 was 100%, specificity 98.0%, positive predictive value 63.6% and negative predictive value 100%. Conclusions Mutant-specific EGFR IHC has good specificity and sensitivity for identifying targeted activating EGFR mutations. Although inferior to molecular genetic analysis of the EGFR gene, IHC is highly specific and sensitive for the targeted EGFR mutations. The antibodies are likely to be of clinical value in cases where limited tumour material is available, or in situations where molecular genetic analysis is not readily available

    “It Didn’t Seem Like Race Mattered”

    No full text
    Prior research measuring service-learning program successes reveals the approach can positively affect students\u27 attitudes toward community service, can increase students\u27 motivation to learn and ability to internalize class material, and can change their view of social issues. Studies also suggest that college students sometimes enter and leave a field site in ways that contribute to the reproduction of inequality. In this paper, we draw on three years of data from a service-learning project that involves sending college-age students (most of whom are white and materially privileged) into local, predominantly black, high-poverty neighborhoods to participate in community gardening. Using data generated by student assignments, we draw on service-learning research and critical race/whiteness scholarship to explore whether altering service-learning pedagogical tactics influences how students conceptualize and talk about race or if status factors, such as a student\u27s own race, gender, and/or class, intersect to have greater impact on the racial logics they employ

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore