271 research outputs found

    Role of Surface Macromolecules and Solution Chemistry on Bacterial Adhesion to Sand

    Get PDF
    Bacterial deposition in porous media is of great importance in a number of environmental processes such as bioremediation, water treatment and pathogenic contamination. Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous Gram-negative bacterium in the environment, which is able to cause disease particularly to susceptible individuals. It has been widely used as a model microorganism to study biofilm formation and Extracellular Polymeric Substances\u27 (EPS) influences. In this work, properties of Lipopolysaccharide (LPS) mutant Ă„waaL, EPS mutants Ă„pel, Ă„psl, Ă„pel/psl of P. aeruginosa PAO1, such as zeta potential, contact angle, and hydrophobicity were determined. Packed column experiments, and Quartz Crystal Microbalance with Dissipation (QCM-D) were conducted and compared with the wild-type strain under different ionic strengths to further understand the bacterial deposition mechanisms. The deposition behavior could be described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory under three ionic strength conditions (3 mM, 10 mM, 100 mM in NaCl). However, the DLVO theory and XDLVO (Extended DLVO) theory fail to explain the different adhesion behaviors among the strains. It was proposed that steric force on bacterial surfaces caused by LPS significantly affects bacterial adhesion and different chemical structures of the EPS molecules contribute to bacterial adhesion differently. The QCM-D experiment was designed to explain the adhesion differences among different EPS components: alginate, Bovine Serum Albumin (BSA), humic acid and psl polysaccharide. Zeta potentials of the chemicals and quartz particles were measured at different ionic strengths and the DLVO interaction between the chemicals and quartz was plotted. BSA, owing to its positive charged amine functional group, had the largest deposition mass under all ionic strengths. Humic acid, alginate and psl polysaccharide had very similar deposition behavior at all the conditions explored. Alginate had a very unique swelling structure at 100 mM NaCl, which contributed to the largest adhesion coefficient of the pel mutant from the column experiment. In addition, the transport and adhesion of Total Coliform, Escherichia coli (E. coli) and Enterococci under different climatic conditions at Bradford Beach, Milwaukee was explored. It was found that precipitation had the most positive effect on bacterial surge at Bradford Beach among all the influencing factors such as wind direction, wind speed and temperature. Cladophora could harbor a significant amount of bacteria because it could provide shelter and nutrients to bacterial reproduction. Beach sand could filter bacteria in lake water and sustain their growth

    The Ability of Training Approaches to Reduce Agricultural Knowledge Gaps between Men and Women in Rural Uganda

    Get PDF
    This study explores the effectiveness of three training methods (traditional lecture-field demonstration, lecture and field demonstration + video, and video only) to narrow the gap in knowledge about row bean planting between men and women farmers in Kamuli District,Uganda. Using a pretest-posttestquasi-experimental design, this study found that the method that combined video and lecture/demonstration was significantly more effective in narrowing the gender knowledge gap. Use of video alone improved women’s knowledge scores, but did not close the gap

    A Flexible Electronic Helical Guide Controller

    Get PDF
    AbstractIn this paper, an Electronic Helical Guide Controller (EHGC) is proposed, for helical gear shaping processes. In most traditional gear shaper machines, the cutter's reciprocating movement is driven by a crank-connecting rod mechanism. Therefore, this study adopts this kind of gear shaper as the machine platform to establish an accurate mathematical model. The control algorithm is embedded in the interpolation module of the CNC system using electronic gearbox techniques to realize special multi-axis linkage control requirements. The crankshaft's angular position is measured and the rotational speed is calculated in each control cycle. The actual position and velocity of the cutter along the Z-axis can be calculated using the geometric relations of the crank-connecting mechanism, and motion in the other axes can be controlled by the electronic gearbox. A special G code with parameters (G83) is also designed and the EHGC control through NC programming is realized in an improvised gear shaping CNC machine. The proposed EHGC is low cost and easy to implement in practice since it does not need a linear grating ruler and a probe on the Z-axis. Furthermore, EHGC allows the flexibility to change a part's helix angle to compensate for distortions caused by heat treatment. Simulations and experiments are performed to verify the effectiveness of the proposed EHGC

    A local discontinuous Galerkin method for the (non)-isothermal Navier-Stokes-Korteweg equations

    Get PDF
    In this article, we develop a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations in conservative form. These equations are used to model the dynamics of a compressible fluid exhibiting liquid-vapour phase transitions. The NSK-equations are closed with a Van der Waals equation of state and contain third order nonlinear derivative terms. These contributions frequently cause standard numerical methods to violate the energy dissipation relation and require additional stabilization terms to prevent numerical instabilities. In order to address these problems we first develop an LDG method for the isothermal NSK equations using discontinuous finite element spaces combined with a time-implicit Runge-Kutta integration method. Next, we extend the LDG discretization to the non-isothermal NSK equations. An important feature of the LDG discretizations presented in this article is that they are relatively simple, robust and do not require special regularization terms. Finally, computational experiments are provided to demonstrate the capabilities, accuracy and stability of the LDG discretizations

    Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors

    Get PDF
    Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy such as anti-PD-L1 antibody in treating cancers, myeloid-derived suppressor cells (MDSCs) that lead to the formation of the protumor immunosuppressive microenvironment are one of the major contributors to ICB resistance. Therefore, inhibition of MDSC accumulation and function is critical for further enhancing the therapeutic efficacy of anti-PD-L1 antibody in a majority of cancer patients. Artemisinin (ART), the most effective antimalarial drug with tumoricidal and immunoregulatory activities, is a potential option for cancer treatment. Although ART is reported to reduce MDSC levels in 4T1 breast tumor model and improve the therapeutic efficacy of anti-PD-L1 antibody in T cell lymphoma-bearing mice, how ART influences MDSC accumulation, function, and molecular pathways as well as MDSC-mediated anti-PD-L1 resistance in melanoma or liver tumors remains unknown. Here, we reported that ART blocks the accumulation and function of MDSCs by polarizing M2-like tumor-promoting phenotype towards M1-like antitumor one. This switch is regulated via PI3K/AKT, mTOR, and MAPK signaling pathways. Targeting MDSCs by ART could significantly reduce tumor growth in various mouse models. More importantly, the ART therapy remarkably enhanced the efficacy of anti-PD-L1 immunotherapy in tumor-bearing mice through promoting antitumor T cell infiltration and proliferation. These findings indicate that ART controls the functional polarization of MDSCs and targeting MDSCs by ART provides a novel therapeutic strategy to enhance anti-PD-L1 cancer immunotherapy

    LC–MS-Based Urine Metabolomics Analysis for the Diagnosis and Monitoring of Medulloblastoma

    Get PDF
    Medulloblastoma (MB) is the most common type of brain cancer in pediatric patients. Body fluid biomarkers will be helpful for clinical diagnosis and treatment. In this study, liquid chromatography–mass spectrometry (LC–MS)-based metabolomics was used to identify specific urine metabolites of MB in a cohort, including 118 healthy controls, 111 MB patients, 31 patients with malignant brain cancer, 51 patients with benign brain disease, 29 MB patients 1 week postsurgery and 80 MB patients 1 month postsurgery. The results showed an apparent separation for MB vs. healthy controls, MB vs. benign brain diseases, and MB vs. other malignant brain tumors, with AUCs values of 0.947/0.906, 0.900/0.873, and 0.842/0.885, respectively, in the discovery/validation group. Among all differentially identified metabolites, 4 metabolites (tetrahydrocortisone, cortolone, urothion and 20-oxo-leukotriene E4) were specific to MB. The analysis of these 4 metabolites in pre- and postoperative MB urine samples showed that their levels returned to a healthy state after the operation (especially after one month), showing the potential specificity of these metabolites for MB. Finally, the combination of two metabolites, tetrahydrocortisone and cortolone, showed diagnostic accuracy for distinguishing MB from non-MB, with an AUC value of 0.851. Our data showed that urine metabolomics might be used for MB diagnosis and monitoring

    A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images

    Get PDF
    Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial segmentation and to compare its performance with existing deep learning algorithms. Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this architecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model performance was evaluated with the DICE score, Jaccard index and Hausdorff distance. Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced cardiovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 2013 image data set. Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applications. Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibrillation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial segmentation is proposed in the present study

    Sulfur Dioxide Activates Cl-/HCO3- Exchanger via Sulphenylating AE2 to Reduce Intracellular pH in Vascular Smooth Muscle Cells

    Get PDF
    Sulfur dioxide (SO2) is a colorless and irritating gas. Recent studies indicate that SO2 acts as the gas signal molecule and inhibits vascular smooth muscle cell (VSMC) proliferation. Cell proliferation depends on intracellular pH (pHi). Transmembrane cystein mutation of Na+- independent Cl-/HCO3- exchanger (anion exchanger, AE) affects pHi. However, whether SO2 inhibits VSMC proliferation by reducing pHi is still unknown. Here, we investigated whether SO2 reduced pHi to inhibit the proliferation of VSMCs and explore its molecular mechanisms. Within a range of 50–200 μM, SO2 was found to lower the pHi in VSMCs. Concurrently, NH4Cl pre-perfusion showed that SO2 significantly activated AE, whereas the AE inhibitor 4,4′-diisothiocyanatostilbene- 2,20-disulfonic acid (DIDS) significantly attenuated the effect of SO2 on pHi in VSMCs. While 200 μM SO2 sulphenylated AE2, while dithiothreitol (DTT) blocked the sulphenylation of AE2 and subsequent AE activation by SO2, thereby restoring the pHi in VSMCs. Furthermore, DIDS pretreatment eliminated SO2-induced inhibition of PDGF-BB-stimulated VSMC proliferation. We report for the first time that SO2 inhibits VSMC proliferation in part by direct activation of the AE via posttranslational sulphenylation and induction of intracellular acidification
    • …
    corecore