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Abstract

Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial 
segmentation and to compare its performance with existing deep learning algorithms.
Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this archi-
tecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error 
caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model 
performance was evaluated with the DICE score, Jaccard index and Hausdorff distance.
Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced car-
diovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and 
a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the 
proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 
2013 image data set.
Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D 
left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applica-
tions.
Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibril-
lation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, 
despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic 
resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and 
artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial seg-
mentation is proposed in the present study.
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Introduction

Obtaining 3D atrial geometry from late gadolinium-
enhanced magnetic resonance imaging (LGE-MRI) 
is a crucial task for the structural analysis of patients Correspondence: Jieyun Bai, E-mail: bai_jieyun@126.com
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with atrial fibrillation (AF). Direct segmentation 
and 3D reconstruction based on 2D images, and the 
relationship between the front and back frames are 
commonly used in clinical studies. However, this 
manual segmentation is labor-intensive, structure-
specialized work. Its accuracy remains challenging 
because of imaging artifacts, varying intensities 
depending on the extent of fibrosis, and varying 
imaging quality [1]. Therefore, an intelligent algo-
rithm is urgently needed to perform fully automated 
3D segmentation, to ensure precise reconstruction 
and measurement of atrial geometry, thereby facili-
tating clinical applications.

In 2018, the Statistical Atlases and Computational 
Modeling of the Heart workshop held the left atrial 
(LA) Segmentation Challenge; 27 teams partici-
pated in the final evaluation phase, and 18 teams 
attended the conference and proposed diverse 
approaches. These approaches included two tradi-
tional methods and 16 deep-learning models. These 
two traditional methods ranked second and third 
from the bottom, respectively. In contrast, the top 
ten were deep-learning models, and the Double 3D 
U-Net model from Xia et al. [2] achieved the best 
score in this challenge [3]. Therefore, deep-learning 
models are highly promising for fully automated 
LA segmentation.

The objective of this research was to introduce 
an automated segmentation approach and verify its 
accuracy.

Methods

Image Acquisition and Pre-Processing

The University of Utah provided 100 3D LGE-
MRIs, which were randomly split into training 
(N  =  80) and test (N  =  20) sets. Each 3D LGE-
MRI scan had a spatial size of either 640  ×  640 or 
576  ×  576 pixels, and consisted of 88 slices. A 1.5 
Tesla Avanto or 3.0 Tesla Verio clinical whole-body 
scanner was used to acquire LGE-MRIs with a spa-
tial resolution of 0.625  ×  0.625  ×  0.625 mm [3]. To 
obtain the segmentation masks as the ground truths, 
experts manually segmented the LA, including the 
LA appendage, the mitral valve, and the pulmonary 
vein regions. To increase the performance of deep-
learning models, data augmentation (e.g., elastic 

deformations, affine transformations and warping) 
was used to artificially increase the size of the train-
ing set without causing overfitting [4]. All images 
were cropped to the same size (576  ×  576  ×  80) for 
input into different networks.

Shared 3D U-Net

U-Net consists of an encoder and decoder that are 
connected with long skip connections. Like U-Net, 
UNet + +  has the same U-shaped architecture of 
the encoder-decoder scheme, but the encoder and 
decoder are connected through a series of nested 
dense convolutional blocks. To improve the perfor-
mance of U-Net, Double U-Net, which combines 
two U-Net architectures stacked on top of each 
other, was proposed. Inspired by Double U-Net, we 
propose Shared U-Net to achieve the performance 
of Double U-Net while decreasing the size of the 
model.

According to the convolution operation rules, 
U-Net designed to segment images can also deter-
mine the position characteristics of the image. 
Therefore, Double U-Net can be used to complete 
these two tasks (i.e., detection and segmentation). 
First, we use U-Net to detect the region of inter-
est (RoI) and then extract the position coordi-
nates. According to the position coordinates of the 
extracted RoI, the RoI area of the original image is 
cropped. Second, the RoI area of the original image 
is input into the second U-Net for LA cavity seg-
mentation (Figure 1A). In contrast to Double U-Net, 
our proposed Shared U-Net can achieve LA cavity 
segmentation (Figure 1B). As shown in Figure 1C, 
our proposed method is also a two-stage approach: 
1) In the first stage, the feature map representing 
the LA is first obtained with the shared 3D U-Net, 
the bounding box is located with a fully connected 
layer, and the RoI for decreasing background pre-
dominance is finally cropped from a 3D LGE-MRI. 
2) In the second stage, the shared 3D U-Net is used 
to precisely segment the LA cavity from the RoI 
output, and zero-padding is applied to reconstruct 
the final 3D LA with the same size as the original 
input.

The shared 3D U-Net used in this study follows 
the U-Net architecture, which can be divided into 
two main parts. The first part is the encoder, which 
extracts relevant image information. The second 
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part is the decoder, which uses the extracted infor-
mation to predict and reconstruct the segmentation 
of the image.

Our approach involves five encoding and decod-
ing blocks in the network architecture. Each encod-
ing block is specifically a residual convolution 
block; that is, the main path is two 3  ×  3  ×  3 convo-
lution operations, and the branch path is the resid-
ual connection. The residual convolution block is 
used for image downsampling and feature extrac-
tion, and the added residual connection alleviates 
the problems of gradient disappearance, gradient 
explosion and overfitting caused by excessive net-
work depth. As the depth of the network increases, 
the number of feature maps increases, as does 

the number of channels in the feature maps. Each 
decoding block consists of a 3  ×  3  ×  3 inverse con-
volution; a feature fusion module, which consists 
of a feature graph concatenation operation accord-
ing to the dimension of the number of channels; 
and a 3  ×  3  ×  3 convolution. A jump connection is 
added between the encoding block and the decod-
ing block corresponding to the U-shaped structure, 
so that the low-level feature information can be 
directly transmitted to the high level, to enable bet-
ter recovery of the original image by the decoder. 
To ensure nonlinearity and avoid the disappearance 
of the gradient problem, each convolution layer is 
followed by a linear element activation function of 
the rectifier.

Figure 1  Difference Between Our Shared 3D U-Net with Double U-Net or Shared U-Net.
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Evaluation Metrics

To assess the precision of various deep-learning 
models, we conducted an evaluation against the 
ground truths. DICE and Jaccard measurements 
were used to verify the performance at the volumet-
ric level.
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where P is the 3D prediction, and G is the corre-
sponding 3D ground truth.

In addition, the Hausdorff distance (HD) was 
used to evaluate the performance of different mod-
els. HD is defined as

( , ) max( ( , ), ( , ))HD A B h A B h B A=

where h(A, B) is called the directed HD and is given 
by

( , ) || ||
max min

h A B a Ab B a b= ∈ ∈ −

where ||a − b|| is the Euclidean distance.

Experimental Settings

Our experiments were based on PyTorch and were 
run on an NVIDIA GTX3090 GPU. The Adam opti-
mizer was used in the experiment. The initial learn-
ing rate was set to 0.001, the epoch was set to 200, 

and the batch size was set to 64. In the training stage, 
we used five-fold cross-validation and early stop 
training to continuously monitor the loss changes in 
the model on the validation set. We aimed to adjust 
the learning rate and other parameters appropriately, 
and stop training when the loss of the validation set 
was at a minimum, to prevent overfitting and ensure 
the model’s generalizability. After training, we used 
the model weight that achieved the best DICE score 
on the validation set as the final model weight.

Results

Figure 2 shows the segmentation results of our pro-
posed method and other 3D networks on a 2018 
image data set and 2013 image data set. Compared 
with the 3D U-Net and 3D U-Net + + models, our 
model showed a more comprehensive segmented 
region. Moreover, compared with Double 3D 
U-Net, our proposed model confers advantages in 
processing surface details, thus, making the result 
similar to the ground truth.

Our method achieved a DICE score of 0.918 
and a Jaccard index of 0.848. Compared with 2D 
U-Net, 3D U-Net, U-Net + +, 3D V-Net and Double 
3D U-Net, our method performed best (Figure 3). 
In detail, the DICE score increased from 0.916 for 
Double 3D U-Net to 0.918 for our model with a 
shared 3D U-Net, and the Jaccard index increased 
from 0.845 to 0.848.

Despite a slight increase in segmentation per-
formance, the number of parameters, our model 
required lower memory consumption and shorter 

2018
image

data set

2013
image

data set

Ground truth Double 3D UNet Shared 3D UNet 3D UNet++ 3D UNet

Figure 2  Sample Outputs of the Proposed Method and Various 3D Networks on a 2018 Image Data Set and 2013 Image 
Data Set.
The proposed network, using the same 3D U-Net to perform region of interest (RoI) positioning and LA cavity segmentation, 
handles surface details better than other models while ensuring the integrity of the segmented area, thus, making the output 
more similar to the ground truth.
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training times than the other methods. With the 
prolongation of the side length of RoI, the mem-
ory consumption and training time of the Double 
3D U-Net dramatically increased, whereas those 
of our method were lower and showed little varia-
tion (Figure 4). Similarly, the number of parameters 

of our method was half that of Double 3D U-Net 
(176620KB vs. 88276KB).

The best performance of the proposed model is 
attributable to our modifications to the traditional 2D 
U-Net (Table 1). In contrast to 2D U-Net with 3  ×  3 
convolutions, 3D U-Net with 3  ×  3  ×  3 convolutions 
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Figure 3  Performance of Various Networks, Evaluated with the DICE Score and Jaccard Index.
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Figure 4  Memory Consumption and Training Time.
(A) Memory consumption between Double 3D U-Net and our method. (B) Training time of two methods.

Table 1  Results of Four Experiments.

Experiments   Network   DICE   HD   Jaccard

Exp.1 (2D Vs. 3D)   2D U-Net   0.890   14.051   0.802
  3D U-Net   0.903   4.234   0.823

Exp.2 (U-Net Vs. U-Net + +)   2D U-Net + +    0.903   12.386   0.823
  3D U-Net + +    0.908   3.639   0.832

Exp.3 (Single Vs. Double)   3D U-Net   0.903   4.234   0.823
  Double 3D U-Net   0.916   1.300   0.845

Exp.4 (Double Vs. Ours)   Double 3D U-Net   0.916   1.300   0.845
  Shared 3D U-Net   0.918   1.211   0.848

Exp.1: 2D U-Net vs. 3D U-Net; Exp.2: 2D/3D U-Net vs. 2D/3D U-Net + +; Exp.3: Single 3D U-Net vs. Double 3D U-Net; 
Exp.4: Double 3D U-Net vs. Shared 3D U-Net. Bold values indicate better results.



J. Bai et al., A Two-stage Method with a Shared 3D U-Net6

consider 3D information and is suitable for the seg-
mentation of 3D volume data, thus, resulting in bet-
ter performance in experiment one (Exp. 1). The 
3D U-Net + +  model was developed on the basis of 
3D U-Net by addition of more skip connections for 
extracting richer shallow features to generate several 
“U-Nets.” Compared with 3D U-Net, 3D U-Net,++ 
has more parameters, but has slightly effects on the 
DICE score and Jaccard index. Therefore, using 3D 
U-Net rather than 3D U-Net + +, we used a two-
stage strategy for 3D LA segmentation with two 3D 
U-Nets: one for extracting the RoI and the other for 
segmenting LA. Compared with those of 3D U-Net, 
the DICE score and Jaccard index of Double 3D 
U-Net were significantly greater (1.3% and 2.3%, 
respectively; Exp. 3). However, Double 3D U-Net 
had twice the number of parameters as 3D U-Net 
(88276KB vs. 176620KB). Therefore, we proposed 
a two-stage method with only one shared 3D U-Net 
to segment the 3D LA, thus maintaining perfor-
mance while decreasing the number of parameters 
(88276KB; Exp. 4).

Further evaluation was conducted on a pub-
licly available 2013 image data set. The best per-
formance (according to the DICE score, Jaccard 
index and HD) was obtained with the proposed 
model (Shared 3D U-Net; Table 1). However, the 
DICE score, Jaccard index and HD were lower than 
those on the publicly available 2018 image data set 
(Tables 1 and 2).

Discussion

AF, a prevalent type of continuous irregular heart 
rhythm, is caused by different substrates that are 
extensively dispersed in both atrial chambers [5]. 

AF also produces further structural changes, such 
as dilatation, fibrosis and myofiber alterations [6]. 
Consequently, comprehensive research on the 
atrial anatomy and its transformations is essen-
tial to enhance understanding and management 
of AF [7]. Recent studies support the visibility of 
AF-associated structures by LGE-MRI for iden-
tifying AF substrates and predicting AF ablation 
outcomes [8]. On the one hand, the extent and 
distribution of atrial fibrosis have been suggested 
to be reliable predictors of the catheter ablation suc-
cess rate [9, 10]. On the other hand, LA diameter 
and volume have been shown to provide reliable 
information for clinical diagnosis [11]. However, 
the above structural analysis is based on 3D atrial 
geometry.

Segmenting the LA is a crucial step in quanti-
tatively analyzing the structural characteristics of 
the atria. However, LA segmentation on LGE-MRI 
images is difficult, owing to variations in intensity. 
Recently, deep learning techniques have been pro-
posed for automatically segmenting cardiac struc-
tures from medical images in 3D [3,  8]. Multiple 
studies have demonstrated that convolutional neural 
networks exhibit superior performance to conven-
tional techniques [2, 12–25]. Hence, we presented a 
dual-phase method using a collaborative 3D U-Net 
for LA segmentation. Several notable discoveries 
emerged from this study. First, we found that the 
3D U-Net architecture achieved better performance 
than the traditional 2D U-Net architecture. Second, 
double sequential U-Net architectures (e.g., Double 
3D U-Net) achieved superior segmentation results 
to those of a single U-Net (e.g., 3D U-Net). Finally, 
the Double 3D U-Net architecture can be optimized 
with a shared 3D U-Net to decrease model com-
plexity while maintaining good performance.

Table 2  Performance of the Indicated Models on the Publicly Available 2013 Image Data Set.

Model   DICE   Jaccard   HD   Size

Double 3D U-Net   0.842   0.738   5.216   45.18M
Shared 3D U-Net   0.851   0.750   4.382   22.66M
3D U-Net + +    0.815   0.727   7.051   20.50M
3D U-Net   0.810   0.714   6.816   22.84M
2D U-Net + +    0.799   0.674   39.487   32.04M
2D U-Net   0.790   0.666   45.804   31.04M

Bold values indicate better results.
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In the 2018 LA Segmentation Challenge, 17 
teams provided methods and their performance to 
the challenge organizer. As shown in Table 2, the 
top method, with a Double 3D U-Net architecture, 
achieved a Dice score of 0.932 and a Jaccard index 
of 0.874. The Double 3D U-Net design uses the ini-
tial 3D U-Net for automatic RoI detection, and a 3D 
U-Net is subsequently used for the refined regional 
segmentation. Similar to this two-stage strategy, 
our method achieved superior results to those of 
these one-stage networks (Figure 3). In contrast to 
the Double 3D U-Net architecture reported by Xia 
et al., pre-processing (e.g., down-sampling and con-
trast limited adaptive histogram equalization) and 
residual connections were not used in our study, and 
two 3D U-Nets were replaced by a shared 3D U-Net. 
Under the same conditions, we observed similar 
performance between Double 3D U-Net and Shared 
3D U-Net (Table 3), but Shared 3D U-Net had 
lower memory consumption, shorter training times 
and fewer parameters than Double 3D U-Net. In the 
present study, we also evaluated the performance 

of Double 3D U-Net, but our results were not con-
sistent with those obtained in the challenge. This 
inconsistency is attributable to factors including dif-
ferent running devices, pre-processing approaches, 
development frameworks, hyperparameter settings 
and post-processing methods. Nevertheless, several 
tips for improving model performance may be con-
sidered in further work: (1) pre-processing methods 
(e.g., image resizing to multiple scales, normaliza-
tion, cropping, use of de-noise filters, cropping and 
down-sampling); (2) post-processing methods (e.g., 
keeping the largest component, smoothing and dila-
tion erosion); and (3) network components (e.g., 
dense connections, dilated convolutions, spatial 
pyramid pooling, attention units, pre-trained net-
works and ensemble learning).

Training the shared 3D U-Net on more reliable 
data could potentially enhance its accuracy. In the 
present study, our model trained on a 2018 dataset 
achieved a DICE score of 0.918, but when tested on 
a 2013 dataset, it achieved a DICE score of 0.851. 
Therefore, its generalizability is insufficient, and 

Table 3  Comparison of our Method with Methods Submitted to the 2018 LA Segmentation Challenge.

Methods   Train   Test   Networks   DICE   Jaccard

Xia et al. [2]   100   54   Double 3D U-Net   0.932   0.874
Huang et al. [3]   100   54   Double 3D U-Net   0.931   0.872
Bian et al. [14]   100   54   Dilated 2D ResNet   0.926   0.869
Vesal et al. [24]   100   54   Dilated 3D U-Net   0.925   0.861
Yang et al. [25]   100   54   Double 3D U-Net   0.925   0.860
Li et al. [18]   100   54   Double 3D U-Net   0.923   0.859
Puybareau et al. [21]   100   54   2D FCN with VGG-Net   0.923   0.857
Chen et al. [16]   100   54   Multi-task 2D U-Net   0.921   0.854
Xu et al. [3]   100   54   Ensemble 2D U-Net   0.915   0.845
Jia et al. [17]   100   54   Double Ensemble 2D U-Net   0.907   0.832
Liu et al. [19]   100   54   2D U-Net   0.903   0.825
Borra et al. [15]   100   54   3D U-Net   0.898   0.817
De Vente et al. [23]   100   54   2D U-Net   0.897   0.815
Preetha et al. [20]   100   54   2D U-Net   0.887   0.799
Qiao et al. [26]   100   54   Multi-atlas segmentation   0.861   0.758
Nuñez-Garcia et al. [27]   100   54   Multi-atlas segmentation   0.859   0.758
Savioli et al. [22]   100   54   3D FCN   0.851   0.744
Liu et al. [28]   80   20   V-Net   0.91   0.84
Milletari et al.[13]   80   20   V-Net   0.90   0.82
Çiçek et al. [12]   80   20   3D U-Net   0.87   0.78
Liu et al. [29]   80   20   UNSMLNet   0.92   0.85
Ours   80   20   Shared 3D U-Net   0.918   0.848

Bold values indicate better results.
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this important aspect must be further studied in the 
future. Furthermore, we intend to use the shared 3D 
U-Net to segment both atrial chambers and fibro-
sis, given that AF is a bi-chamber disease. Our cur-
rent focus is on developing a dataset that includes 
manual segmentations of atrial chamber masks, 
which may be used to train the 3D U-Net model 
collaboratively.

Conclusions

We proposed an efficient algorithm for fully auto-
matic 3D left atrial segmentation. In our method, 
3D U-Net is used to extract 3D features, and a two-
stage strategy is used to decrease the segmenta-
tion error caused by the class imbalance problem. 
Our network architecture with only one shared 3D 
U-Net has relatively low complexity, low memory 
requirements and a short training time. Our auto-
matic method was highly reproducible and objec-
tive, producing a Dice score of 0.918 and a Jaccard 
index of 0.848, thus, outperforming the traditional 
six methods. Before its application, its performance 
must be further evaluated on an edge computing 
platform, and its effectiveness must be assessed in 
clinical settings.
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