8 research outputs found

    Optimasi Proses Penyerapan SO3 pada Kinerja Kolom Absorber Menggunakan Proses Double Contact Double Absorption (DCDA)

    Get PDF
    Asam sulfat merupakan senyawa kimia yang keberadaannya banyak dipakai dan dibutuhkan serta perannya penting dalam proses produksi pada bidang industri. Asam sulfat digunakan sebagai agen dehidrasi, katalis, reaktan aktif dalam proses kimia, pelarut, dan penyerap. Dalam industri, asam sulfat diproduksi dan dipasok dalam tingkat kemurnian yang tepat untuk baterai penyimpanan, rayon, tawas, pewarna, dan industri farmasi. Proses SO3 absorption merupakan salah satu tahap untuk memproduksi asam sulfat dan merupakan tahap paling krusial dalam pembuatan asam sulfat. Karena dalam prosesnya timggi-rendahnya konsentrasi asam sulfat yang dihasilkan dipengaruhi oleh kondisi operasi dalam absorption tower. Namun umumnya absorption tower dalam proses SO3 absorption tidak menyerap SO3 yang masuk secara efisien, sehingga masih ada rasio SO3 yang tidak terserap dan dikeluarkan ke sistem. Untuk menginvestigasi masalah diatas, optimasi yang ditentukan adalah dengan cara mengetahui pengaruh suhu dan tekanan terhadap proses SO3 absorption di dalam absorption tower dan merancang kolom absorber dengan menggunakan II kolom absorber bertipe Double Contact Double Absorption (DCDA). Simulasi dilakukan dengan menggunakan Aspen HYSYS berdasarkan data desain dari kondisi eksisting dan optimasi didasarkan pada retrofit kolom absorber II pada pabrik asam sulfat yang telah dirancang. Berdasarkan hasil kalkulasi perancangan kolom absorber, digunakan tipe absorber sieve tray tipe cross flow karena tipe tersebut memenuhi syarat sebagai kolom absorber dan kolom stripper karena berada di daerah operasi stabil. Hasil optimasi yang diperoleh yakni retrofit pabrik asam sulfat menggunakan DCDA menaikkan nilai efisiensi produksi dari 94,98% menjadi 99.82%

    Hydroxyapatite Based Material: Natural Resources, Synthesis Methods, 3D Print Filament Fabrication, and Filament Filler

    Get PDF
    Hydroxyapatite is a biomaterial that has been recognized in terms of hard tissue engineering due to its similarity in composition to bioapatite. Moreover, abundant resources and diverse synthesis methods make hydroxyapatite easy to produce. The application in terms of 3D print-based network engineering is also being intensively explored due to hydroxyapatite scaffold fabrication process flexibility. In this review, various hydroxyapatite from natural sources, synthesis methods, hydroxyapatite-based 3D print filament fabrication techniques, as well as fillers used in the production of filaments are discussed

    Effect of Synthesis Temperature on Adsorbent Performance of Blending Anionic and Cationic Gels in Divalent Metal Ions Adsorption

    Get PDF
    In this study, the anionic and cationic gels were synthesized separately using copolymerization between N-isopropylacrylamide (NIPAM) and acrylic acid or chitosan through a polymerization reaction using N,N'-methylenebisacrylamide (MBAA) as a cross-linker with various monomer concentrations and synthesis temperature. The anionic and cationic gels were blended to minimize inter-intra particle association and to improve the adsorption ability. The FTIR analysis found that the synthesis of the NIPAM-co-acrylic acid and NIPAM-co-chitosan gels was successfully carried out, indicating no presence of a vinyl group in the functional group. The result showed that the ion adsorption amount of Pb2+ ions blending gels increased significantly, almost twice compared to the adsorption before blending. The adsorption amount of Pb2+ ions increased with increasing the gel synthesis temperature. The adsorption amount follows the order of Pb2+ > Fe2+ > Ni2+. The adsorption amount of Pb2+ tends to decrease with increasing sedimentation volume. The higher the synthesis temperature, the larger the porous diameter formed. These results demonstrate that blending gel of NIPAM-co-chitosan and NIPAM-co-acrylic acid is a feasible alternative for removing heavy metal ions owing to its good adsorption performance

    Optimasi Proses Penyerapan SO3 pada Kinerja Kolom Absorber Menggunakan Proses Double Contact Double Absorption (DCDA)

    No full text
    Asam sulfat merupakan senyawa kimia yang keberadaannya banyak dipakai dan dibutuhkan serta perannya penting dalam proses produksi pada bidang industri. Asam sulfat digunakan sebagai agen dehidrasi, katalis, reaktan aktif dalam proses kimia, pelarut, dan penyerap. Dalam industri, asam sulfat diproduksi dan dipasok dalam tingkat kemurnian yang tepat untuk baterai penyimpanan, rayon, tawas, pewarna, dan industri farmasi. Proses SO3 absorption merupakan salah satu tahap untuk memproduksi asam sulfat dan merupakan tahap paling krusial dalam pembuatan asam sulfat. Karena dalam prosesnya timggi-rendahnya konsentrasi asam sulfat yang dihasilkan dipengaruhi oleh kondisi operasi dalam absorption tower. Namun umumnya absorption tower dalam proses SO3 absorption tidak menyerap SO3 yang masuk secara efisien, sehingga masih ada rasio SO3 yang tidak terserap dan dikeluarkan ke sistem. Untuk menginvestigasi masalah diatas, optimasi yang ditentukan adalah dengan cara mengetahui pengaruh suhu dan tekanan terhadap proses SO3 absorption di dalam absorption tower dan merancang kolom absorber dengan menggunakan 2 kolom absorber bertipe Double Contact Double Absorption (DCDA). Simulasi dilakukan dengan menggunakan Aspen HYSYS berdasarkan data desain dari kondisi eksisting dan optimasi didasarkan pada retrofit kolom absorber ke-II pada pabrik asam sulfat yang telah dirancang. Berdasarkan hasil kalkulasi perancangan kolom absorber, digunakan tipe absorber sieve tray tipe cross flow karena tipe tersebut memenuhi syarat sebagai kolom absorber dan kolom stripper karena berada di daerah operasi stabil. Hasil optimasi yang diperoleh yakni retrofit pabrik asam sulfat menggunakan DCDA menaikkan nilai efisiensi produksi dari 94,98% menjadi 99,82%. ====================================================================================================================================== Sulfuric acid is a chemical compound whose existence is widely used and needed and its important role in the production process in the industrial field. Sulfuric acid is used as a dehydrating agent, catalyst, active reactant in chemical processes, solvent, and absorbent. In industry, sulfuric acid is produced and supplied at the right purity levels for storage batteries, insecticides, alum, dyes, and the pharmaceutical industry. The SO3 absorption process is one of the stages to produce sulfuric acid and is the most crucial stage in the manufacture of sulfuric acid. Because in the process the low concentration of sulfuric acid produced is influenced by the operating conditions in the absorption tower. However, generally, the absorption tower in the SO3 absorption process does not absorb incoming SO3 efficiently, so there is still a ratio of SO3 that is not absorbed and issued to the system. To investigate the above problem, the optimization determined is to determine the effect of temperature and pressure on the SO3 absorption process in the absorption tower and design an absorber column using two absorber columns of Double Contact Double Absorption (DCDA) type. The simulation was carried out using Aspen HYSYS based on design data from existing conditions and optimization was based on retrofitting the second absorber column at the designed sulfuric acid plant. Based on the calculation results of the absorber column design, the crossflow type sieve tray absorber type is used because this type qualifies as an absorber column and a stripper column. After all, it is in a stable operating area. The optimization results obtained were that the retrofit of the sulfuric acid plant using DCDA increased the production efficiency value from 94.98% to 99.82%

    Surface Coating Effect on Corrosion Resistance of Titanium Alloy Bone Implants by Anodizing Method

    No full text
    In the presented work, the formation of anodic oxide film on Ti-6Al-4V ELI (Extra Low Interstitial) alloy in 0.02 M trisodium phosphate (Na3PO4) electrolyte solution using various voltages were investigated. The color produced by the anodizing, the intensity of TiO2 content, the thickness of the oxide layer, and the corrosion rate were examined. It was obtained that the color appearance of Ti-6Al-4V ELI could be changed easily by altering the applied voltages. The higher the voltage applied in the anodizing process, the thicker the titanium oxide layer formed. The corrosion resistance analysis in a Simulated Body Fluid revealed that the non-anodized specimen showed a higher corrosion rate compared to the anodized specimen. The increase of oxide layer thickness leads to a significant decrease in corrosion rate and consequently increases the corrosion resistance. In addition, the anodized sample achieved the highest corrosion resistance at 15 V
    corecore